--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - generated_from_trainer datasets: - createPLL/gemma2bpll model-index: - name: outputs/qlora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: NousResearch/Llama-3.2-1B # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name load_in_8bit: false load_in_4bit: true strict: false datasets: - path: createPLL/gemma2bpll type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ```

# outputs/qlora-out This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the createPLL/gemma2bpll dataset. It achieves the following results on the evaluation set: - Loss: 0.9679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.77 | 0.0042 | 1 | 1.9898 | | 0.8841 | 0.2524 | 60 | 1.0753 | | 0.7772 | 0.5047 | 120 | 0.9961 | | 0.7169 | 0.7571 | 180 | 0.9679 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0