import logging from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn import torchvision from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput from .configuration_basnet import BASNetConfig logger = logging.getLogger(__name__) @dataclass class BasNetSideOutput(ModelOutput): dout: torch.Tensor d1: Optional[torch.Tensor] = None d2: Optional[torch.Tensor] = None d3: Optional[torch.Tensor] = None d4: Optional[torch.Tensor] = None d5: Optional[torch.Tensor] = None d6: Optional[torch.Tensor] = None db: Optional[torch.Tensor] = None @dataclass class BASNetModelOutput(ModelOutput): activated: BasNetSideOutput class RefUnet(nn.Module): def __init__(self, in_ch: int, inc_ch: int) -> None: super().__init__() self.conv0 = nn.Conv2d(in_ch, inc_ch, kernel_size=3, padding=1) self.conv1 = nn.Conv2d(inc_ch, 64, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(64) self.relu3 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv4 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.bn4 = nn.BatchNorm2d(64) self.relu4 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) ##### self.conv5 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.bn5 = nn.BatchNorm2d(64) self.relu5 = nn.ReLU(inplace=True) ##### self.conv_d4 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.bn_d4 = nn.BatchNorm2d(64) self.relu_d4 = nn.ReLU(inplace=True) self.conv_d3 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.bn_d3 = nn.BatchNorm2d(64) self.relu_d3 = nn.ReLU(inplace=True) self.conv_d2 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.bn_d2 = nn.BatchNorm2d(64) self.relu_d2 = nn.ReLU(inplace=True) self.conv_d1 = nn.Conv2d(128, 64, kernel_size=3, padding=1) self.bn_d1 = nn.BatchNorm2d(64) self.relu_d1 = nn.ReLU(inplace=True) self.conv_d0 = nn.Conv2d(64, 1, kernel_size=3, padding=1) self.upscore2 = nn.Upsample( scale_factor=2, mode="bilinear", align_corners=False ) # self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear') def forward(self, x): hx = x hx = self.conv0(hx) hx1 = self.relu1(self.bn1(self.conv1(hx))) hx = self.pool1(hx1) hx2 = self.relu2(self.bn2(self.conv2(hx))) hx = self.pool2(hx2) hx3 = self.relu3(self.bn3(self.conv3(hx))) hx = self.pool3(hx3) hx4 = self.relu4(self.bn4(self.conv4(hx))) hx = self.pool4(hx4) hx5 = self.relu5(self.bn5(self.conv5(hx))) hx = self.upscore2(hx5) d4 = self.relu_d4(self.bn_d4(self.conv_d4(torch.cat((hx, hx4), 1)))) hx = self.upscore2(d4) d3 = self.relu_d3(self.bn_d3(self.conv_d3(torch.cat((hx, hx3), 1)))) hx = self.upscore2(d3) d2 = self.relu_d2(self.bn_d2(self.conv_d2(torch.cat((hx, hx2), 1)))) hx = self.upscore2(d2) d1 = self.relu_d1(self.bn_d1(self.conv_d1(torch.cat((hx, hx1), 1)))) residual = self.conv_d0(d1) return x + residual def conv3x3(in_planes, out_planes, stride=1) -> nn.Conv2d: "3x3 convolution with padding" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) class BasicBlock(nn.Module): expansion: int = 1 def __init__(self, inplanes: int, planes: int, stride: int = 1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class BASNetModel(PreTrainedModel): config_class = BASNetConfig def __init__(self, config: BASNetConfig) -> None: super().__init__(config) resnet = torchvision.models.resnet34( weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1 ) ## -------------Encoder-------------- self.inconv = nn.Conv2d( config.n_channels, 64, kernel_size=config.kernel_size, padding=1 ) self.inbn = nn.BatchNorm2d(64) self.inrelu = nn.ReLU(inplace=True) # stage 1 self.encoder1 = resnet.layer1 # 256 # stage 2 self.encoder2 = resnet.layer2 # 128 # stage 3 self.encoder3 = resnet.layer3 # 64 # stage 4 self.encoder4 = resnet.layer4 # 32 self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) # stage 5 self.resb5_1 = BasicBlock(512, 512) self.resb5_2 = BasicBlock(512, 512) self.resb5_3 = BasicBlock(512, 512) # 16 self.pool5 = nn.MaxPool2d(2, 2, ceil_mode=True) # stage 6 self.resb6_1 = BasicBlock(512, 512) self.resb6_2 = BasicBlock(512, 512) self.resb6_3 = BasicBlock(512, 512) # 8 ## -------------Bridge-------------- # stage Bridge self.convbg_1 = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, dilation=2, padding=2 ) # 8 self.bnbg_1 = nn.BatchNorm2d(512) self.relubg_1 = nn.ReLU(inplace=True) self.convbg_m = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, dilation=2, padding=2 ) self.bnbg_m = nn.BatchNorm2d(512) self.relubg_m = nn.ReLU(inplace=True) self.convbg_2 = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, dilation=2, padding=2 ) self.bnbg_2 = nn.BatchNorm2d(512) self.relubg_2 = nn.ReLU(inplace=True) ## -------------Decoder-------------- # stage 6d self.conv6d_1 = nn.Conv2d( 1024, 512, kernel_size=config.kernel_size, padding=1 ) # 16 self.bn6d_1 = nn.BatchNorm2d(512) self.relu6d_1 = nn.ReLU(inplace=True) self.conv6d_m = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, dilation=2, padding=2 ) ### self.bn6d_m = nn.BatchNorm2d(512) self.relu6d_m = nn.ReLU(inplace=True) self.conv6d_2 = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, dilation=2, padding=2 ) self.bn6d_2 = nn.BatchNorm2d(512) self.relu6d_2 = nn.ReLU(inplace=True) # stage 5d self.conv5d_1 = nn.Conv2d( 1024, 512, kernel_size=config.kernel_size, padding=1 ) # 16 self.bn5d_1 = nn.BatchNorm2d(512) self.relu5d_1 = nn.ReLU(inplace=True) self.conv5d_m = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, padding=1 ) ### self.bn5d_m = nn.BatchNorm2d(512) self.relu5d_m = nn.ReLU(inplace=True) self.conv5d_2 = nn.Conv2d(512, 512, kernel_size=config.kernel_size, padding=1) self.bn5d_2 = nn.BatchNorm2d(512) self.relu5d_2 = nn.ReLU(inplace=True) # stage 4d self.conv4d_1 = nn.Conv2d( 1024, 512, kernel_size=config.kernel_size, padding=1 ) # 32 self.bn4d_1 = nn.BatchNorm2d(512) self.relu4d_1 = nn.ReLU(inplace=True) self.conv4d_m = nn.Conv2d( 512, 512, kernel_size=config.kernel_size, padding=1 ) ### self.bn4d_m = nn.BatchNorm2d(512) self.relu4d_m = nn.ReLU(inplace=True) self.conv4d_2 = nn.Conv2d(512, 256, kernel_size=config.kernel_size, padding=1) self.bn4d_2 = nn.BatchNorm2d(256) self.relu4d_2 = nn.ReLU(inplace=True) # stage 3d self.conv3d_1 = nn.Conv2d( 512, 256, kernel_size=config.kernel_size, padding=1 ) # 64 self.bn3d_1 = nn.BatchNorm2d(256) self.relu3d_1 = nn.ReLU(inplace=True) self.conv3d_m = nn.Conv2d( 256, 256, kernel_size=config.kernel_size, padding=1 ) ### self.bn3d_m = nn.BatchNorm2d(256) self.relu3d_m = nn.ReLU(inplace=True) self.conv3d_2 = nn.Conv2d(256, 128, kernel_size=config.kernel_size, padding=1) self.bn3d_2 = nn.BatchNorm2d(128) self.relu3d_2 = nn.ReLU(inplace=True) # stage 2d self.conv2d_1 = nn.Conv2d( 256, 128, kernel_size=config.kernel_size, padding=1 ) # 128 self.bn2d_1 = nn.BatchNorm2d(128) self.relu2d_1 = nn.ReLU(inplace=True) self.conv2d_m = nn.Conv2d( 128, 128, kernel_size=config.kernel_size, padding=1 ) ### self.bn2d_m = nn.BatchNorm2d(128) self.relu2d_m = nn.ReLU(inplace=True) self.conv2d_2 = nn.Conv2d(128, 64, kernel_size=config.kernel_size, padding=1) self.bn2d_2 = nn.BatchNorm2d(64) self.relu2d_2 = nn.ReLU(inplace=True) # stage 1d self.conv1d_1 = nn.Conv2d( 128, 64, kernel_size=config.kernel_size, padding=1 ) # 256 self.bn1d_1 = nn.BatchNorm2d(64) self.relu1d_1 = nn.ReLU(inplace=True) self.conv1d_m = nn.Conv2d( 64, 64, kernel_size=config.kernel_size, padding=1 ) ### self.bn1d_m = nn.BatchNorm2d(64) self.relu1d_m = nn.ReLU(inplace=True) self.conv1d_2 = nn.Conv2d(64, 64, kernel_size=config.kernel_size, padding=1) self.bn1d_2 = nn.BatchNorm2d(64) self.relu1d_2 = nn.ReLU(inplace=True) ## -------------Bilinear Upsampling-------------- self.upscore6 = nn.Upsample( scale_factor=32, mode="bilinear", align_corners=False ) ### self.upscore5 = nn.Upsample( scale_factor=16, mode="bilinear", align_corners=False ) self.upscore4 = nn.Upsample( scale_factor=8, mode="bilinear", align_corners=False ) self.upscore3 = nn.Upsample( scale_factor=4, mode="bilinear", align_corners=False ) self.upscore2 = nn.Upsample( scale_factor=2, mode="bilinear", align_corners=False ) # self.upscore6 = nn.Upsample(scale_factor=32, mode='bilinear') ### # self.upscore5 = nn.Upsample(scale_factor=16, mode='bilinear') # self.upscore4 = nn.Upsample(scale_factor=8, mode='bilinear') # self.upscore3 = nn.Upsample(scale_factor=4, mode='bilinear') # self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear') ## -------------Side Output-------------- self.outconvb = nn.Conv2d(512, 1, kernel_size=3, padding=1) self.outconv6 = nn.Conv2d(512, 1, kernel_size=3, padding=1) self.outconv5 = nn.Conv2d(512, 1, kernel_size=3, padding=1) self.outconv4 = nn.Conv2d(256, 1, kernel_size=3, padding=1) self.outconv3 = nn.Conv2d(128, 1, kernel_size=3, padding=1) self.outconv2 = nn.Conv2d(64, 1, kernel_size=3, padding=1) self.outconv1 = nn.Conv2d(64, 1, kernel_size=3, padding=1) ## -------------Refine Module------------- self.refunet = RefUnet(1, 64) self.post_init() def forward( self, pixel_values: torch.Tensor, return_dict: Optional[bool] = None ) -> Union[Tuple, BASNetModelOutput]: hx = pixel_values ## -------------Encoder------------- hx = self.inconv(hx) hx = self.inbn(hx) hx = self.inrelu(hx) h1 = self.encoder1(hx) # 256 h2 = self.encoder2(h1) # 128 h3 = self.encoder3(h2) # 64 h4 = self.encoder4(h3) # 32 hx = self.pool4(h4) # 16 hx = self.resb5_1(hx) hx = self.resb5_2(hx) h5 = self.resb5_3(hx) hx = self.pool5(h5) # 8 hx = self.resb6_1(hx) hx = self.resb6_2(hx) h6 = self.resb6_3(hx) ## -------------Bridge------------- hx = self.relubg_1(self.bnbg_1(self.convbg_1(h6))) # 8 hx = self.relubg_m(self.bnbg_m(self.convbg_m(hx))) hbg = self.relubg_2(self.bnbg_2(self.convbg_2(hx))) ## -------------Decoder------------- hx = self.relu6d_1(self.bn6d_1(self.conv6d_1(torch.cat((hbg, h6), 1)))) hx = self.relu6d_m(self.bn6d_m(self.conv6d_m(hx))) hd6 = self.relu6d_2(self.bn5d_2(self.conv6d_2(hx))) hx = self.upscore2(hd6) # 8 -> 16 hx = self.relu5d_1(self.bn5d_1(self.conv5d_1(torch.cat((hx, h5), 1)))) hx = self.relu5d_m(self.bn5d_m(self.conv5d_m(hx))) hd5 = self.relu5d_2(self.bn5d_2(self.conv5d_2(hx))) hx = self.upscore2(hd5) # 16 -> 32 hx = self.relu4d_1(self.bn4d_1(self.conv4d_1(torch.cat((hx, h4), 1)))) hx = self.relu4d_m(self.bn4d_m(self.conv4d_m(hx))) hd4 = self.relu4d_2(self.bn4d_2(self.conv4d_2(hx))) hx = self.upscore2(hd4) # 32 -> 64 hx = self.relu3d_1(self.bn3d_1(self.conv3d_1(torch.cat((hx, h3), 1)))) hx = self.relu3d_m(self.bn3d_m(self.conv3d_m(hx))) hd3 = self.relu3d_2(self.bn3d_2(self.conv3d_2(hx))) hx = self.upscore2(hd3) # 64 -> 128 hx = self.relu2d_1(self.bn2d_1(self.conv2d_1(torch.cat((hx, h2), 1)))) hx = self.relu2d_m(self.bn2d_m(self.conv2d_m(hx))) hd2 = self.relu2d_2(self.bn2d_2(self.conv2d_2(hx))) hx = self.upscore2(hd2) # 128 -> 256 hx = self.relu1d_1(self.bn1d_1(self.conv1d_1(torch.cat((hx, h1), 1)))) hx = self.relu1d_m(self.bn1d_m(self.conv1d_m(hx))) hd1 = self.relu1d_2(self.bn1d_2(self.conv1d_2(hx))) ## -------------Side Output------------- db = self.outconvb(hbg) db = self.upscore6(db) # 8->256 d6 = self.outconv6(hd6) d6 = self.upscore6(d6) # 8->256 d5 = self.outconv5(hd5) d5 = self.upscore5(d5) # 16->256 d4 = self.outconv4(hd4) d4 = self.upscore4(d4) # 32->256 d3 = self.outconv3(hd3) d3 = self.upscore3(d3) # 64->256 d2 = self.outconv2(hd2) d2 = self.upscore2(d2) # 128->256 d1 = self.outconv1(hd1) # 256 ## -------------Refine Module------------- dout = self.refunet(d1) # 256 dout_act = torch.sigmoid(dout) d1_act = torch.sigmoid(d1) d2_act = torch.sigmoid(d2) d3_act = torch.sigmoid(d3) d4_act = torch.sigmoid(d4) d5_act = torch.sigmoid(d5) d6_act = torch.sigmoid(d6) db_act = torch.sigmoid(db) side_outputs = ( dout_act, d1_act, d2_act, d3_act, d4_act, d5_act, d6_act, db_act, ) if not return_dict: return (side_outputs,) return BASNetModelOutput( activated=BasNetSideOutput(*side_outputs), ) def convert_from_checkpoint( repo_id: str, filename: str, config: Optional[BASNetConfig] = None ) -> BASNetModel: from huggingface_hub import hf_hub_download checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename) config = config or BASNetConfig() model = BASNetModel(config) logger.info(f"Loading checkpoint from {checkpoint_path}") state_dict = torch.load(checkpoint_path) model.load_state_dict(state_dict, strict=True) model.eval() return model