Upload processor
Browse files- image_processing_isnet.py +60 -0
- preprocessor_config.json +10 -0
image_processing_isnet.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from PIL import Image
|
6 |
+
from PIL.Image import Image as PilImage
|
7 |
+
from torchvision import transforms
|
8 |
+
from torchvision.transforms.functional import normalize
|
9 |
+
from transformers.image_processing_base import BatchFeature
|
10 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
11 |
+
from transformers.image_utils import ImageInput
|
12 |
+
|
13 |
+
|
14 |
+
def apply_transform(data):
|
15 |
+
transform = transforms.ToTensor()
|
16 |
+
return transform(data)
|
17 |
+
|
18 |
+
|
19 |
+
class ISNetImageProcessor(BaseImageProcessor):
|
20 |
+
def __init__(self, model_in_size: Tuple[int, int] = (1024, 1024), **kwargs) -> None:
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
self.model_in_size = model_in_size
|
23 |
+
|
24 |
+
def preprocess(self, images: ImageInput, **kwargs) -> BatchFeature:
|
25 |
+
if not isinstance(images, PilImage):
|
26 |
+
raise ValueError(f"Expected PIL Image, got {type(images)}")
|
27 |
+
|
28 |
+
image_pil = images
|
29 |
+
image_tensor = apply_transform(image_pil)
|
30 |
+
|
31 |
+
# shape: (3, h, w) -> (1, 3, h, w)
|
32 |
+
image_tensor = image_tensor.unsqueeze(dim=0)
|
33 |
+
|
34 |
+
image_tensor = F.interpolate(
|
35 |
+
image_tensor, size=self.model_in_size, mode="bilinear", align_corners=False
|
36 |
+
)
|
37 |
+
image_tensor = normalize(
|
38 |
+
image_tensor, mean=[0.5, 0.5, 0.5], std=[1.0, 1.0, 1.0]
|
39 |
+
)
|
40 |
+
return BatchFeature(data={"pixel_values": image_tensor}, tensor_type="pt")
|
41 |
+
|
42 |
+
def postprocess(
|
43 |
+
self, prediction: torch.Tensor, width: int, height: int, **kwargs
|
44 |
+
) -> PilImage:
|
45 |
+
def _norm_prediction(d: torch.Tensor) -> torch.Tensor:
|
46 |
+
ma, mi = torch.max(d), torch.min(d)
|
47 |
+
|
48 |
+
# division while avoiding zero division
|
49 |
+
dn = (d - mi) / ((ma - mi) + torch.finfo(torch.float32).eps)
|
50 |
+
return dn
|
51 |
+
|
52 |
+
prediction = _norm_prediction(prediction)
|
53 |
+
prediction = prediction.squeeze()
|
54 |
+
prediction = prediction * 255 + 0.5
|
55 |
+
prediction = prediction.clamp(0, 255)
|
56 |
+
|
57 |
+
prediction_np = prediction.cpu().numpy()
|
58 |
+
image = Image.fromarray(prediction_np).convert("RGB")
|
59 |
+
image = image.resize((width, height), resample=Image.Resampling.BILINEAR)
|
60 |
+
return image
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_isnet.ISNetImageProcessor"
|
4 |
+
},
|
5 |
+
"image_processor_type": "ISNetImageProcessor",
|
6 |
+
"model_in_size": [
|
7 |
+
1024,
|
8 |
+
1024
|
9 |
+
]
|
10 |
+
}
|