File size: 8,394 Bytes
2054d27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gzip
import random
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig, AdamW
import sys
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast
import tqdm
from datetime import datetime
from shutil import copyfile
import os
####################################
import gzip
from collections import defaultdict
import logging
import tqdm
import numpy as np
import sys
import pytrec_eval
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import torch
model_name = sys.argv[1]
max_length = 350
######### Evaluation
queries_filepath = 'msmarco-data/trec2019/msmarco-test2019-queries.tsv.gz'
queries_eval = {}
with gzip.open(queries_filepath, 'rt', encoding='utf8') as fIn:
for line in fIn:
qid, query = line.strip().split("\t")[0:2]
queries_eval[qid] = query
rel = defaultdict(lambda: defaultdict(int))
with open('msmarco-data/trec2019/2019qrels-pass.txt') as fIn:
for line in fIn:
qid, _, pid, score = line.strip().split()
score = int(score)
if score > 0:
rel[qid][pid] = score
relevant_qid = []
for qid in queries_eval:
if len(rel[qid]) > 0:
relevant_qid.append(qid)
# Read top 1k
passage_cand = {}
with gzip.open('msmarco-data/trec2019/msmarco-passagetest2019-top1000.tsv.gz', 'rt', encoding='utf8') as fIn:
for line in fIn:
qid, pid, query, passage = line.strip().split("\t")
if qid not in passage_cand:
passage_cand[qid] = []
passage_cand[qid].append([pid, passage])
def eval_modal(model_path):
run = {}
model = CrossEncoder(model_path, max_length=512)
for qid in relevant_qid:
query = queries_eval[qid]
cand = passage_cand[qid]
pids = [c[0] for c in cand]
corpus_sentences = [c[1] for c in cand]
## CrossEncoder
cross_inp = [[query, sent] for sent in corpus_sentences]
if model.config.num_labels > 1:
cross_scores = model.predict(cross_inp, apply_softmax=True)[:, 1].tolist()
else:
cross_scores = model.predict(cross_inp, activation_fct=torch.nn.Identity()).tolist()
cross_scores_sparse = {}
for idx, pid in enumerate(pids):
cross_scores_sparse[pid] = cross_scores[idx]
sparse_scores = cross_scores_sparse
run[qid] = {}
for pid in sparse_scores:
run[qid][pid] = float(sparse_scores[pid])
evaluator = pytrec_eval.RelevanceEvaluator(rel, {'ndcg_cut.10'})
scores = evaluator.evaluate(run)
scores_mean = np.mean([ele["ndcg_cut_10"] for ele in scores.values()])
print("NDCG@10: {:.2f}".format(scores_mean * 100))
return scores_mean
################################
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = AutoConfig.from_pretrained(model_name)
config.num_labels = 1
model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
#######################
queries = {}
corpus = {}
output_save_path = 'output/train_cross-encoder_mse-{}-{}'.format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
output_save_path_latest = output_save_path+"-latest"
tokenizer.save_pretrained(output_save_path)
tokenizer.save_pretrained(output_save_path_latest)
# Write self to path
train_script_path = os.path.join(output_save_path, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
####
train_script_path = os.path.join(output_save_path_latest, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
#### Read train files
class MultilingualDataset(Dataset):
def __init__(self):
self.examples = defaultdict(lambda: defaultdict(list)) #[id][lang] => [samples...]
def add(self, lang, filepath):
open_method = gzip.open if filepath.endswith('.gz') else open
with open_method(filepath, 'rt') as fIn:
for line in fIn:
pid, passage = line.strip().split("\t")
self.examples[pid][lang].append(passage)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
all_examples = self.examples[item] #All examples in all languages
lang_examples = random.choice(list(all_examples.values())) #Examples in on specific language
return random.choice(lang_examples) #One random example
train_corpus = MultilingualDataset()
train_corpus.add('en', 'msmarco-data/collection.tsv')
train_corpus.add('de', 'msmarco-data/de/collection.de.opus-mt.tsv.gz')
train_corpus.add('de', 'msmarco-data/de/collection.de.wmt19.tsv.gz')
train_queries = MultilingualDataset()
train_queries.add('en', 'msmarco-data/queries.train.tsv')
train_queries.add('de', 'msmarco-data/de/queries.train.de.opus-mt.tsv.gz')
train_queries.add('de', 'msmarco-data/de/queries.train.de.wmt19.tsv.gz')
############## MSE Dataset
class MSEDataset(Dataset):
def __init__(self, filepath):
super().__init__()
self.examples = []
with open(filepath) as fIn:
for line in fIn:
pos_score, neg_score, qid, pid1, pid2 = line.strip().split("\t")
self.examples.append([qid, pid1, pid2, float(pos_score)-float(neg_score)])
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return self.examples[item]
train_batch_size = 16
train_dataset = MSEDataset('msmarco-data/bert_cat_ensemble_msmarcopassage_train_scores_ids.tsv')
train_dataloader = DataLoader(train_dataset, drop_last=True, shuffle=True, batch_size=train_batch_size)
############## Optimizer
weight_decay = 0.01
max_grad_norm = 1
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5)
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=len(train_dataloader))
scaler = torch.cuda.amp.GradScaler()
loss_fct = torch.nn.MSELoss()
### Start training
model.to(device)
auto_save = 10000
best_ndcg_score = 0
for step_idx, batch in tqdm.tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
batch_queries = [train_queries[qid] for qid in batch[0]]
batch_pos = [train_corpus[cid] for cid in batch[1]]
batch_neg = [train_corpus[cid] for cid in batch[2]]
scores = batch[3].float().to(device) #torch.tensor(batch[3], dtype=torch.float, device=device)
with autocast():
inp_pos = tokenizer(batch_queries, batch_pos, max_length=max_length, padding=True, truncation='longest_first', return_tensors='pt').to(device)
pred_pos = model(**inp_pos).logits.squeeze()
inp_neg = tokenizer(batch_queries, batch_neg, max_length=max_length, padding=True, truncation='longest_first', return_tensors='pt').to(device)
pred_neg = model(**inp_neg).logits.squeeze()
pred_diff = pred_pos - pred_neg
loss_value = loss_fct(pred_diff, scores)
scaler.scale(loss_value).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
scheduler.step()
if (step_idx+1) % auto_save == 0:
print("Step:", step_idx+1)
model.save_pretrained(output_save_path_latest)
ndcg_score = eval_modal(output_save_path_latest)
if ndcg_score >= best_ndcg_score:
best_ndcg_score = ndcg_score
print("Save to:", output_save_path)
model.save_pretrained(output_save_path)
model.save_pretrained(output_save_path)
# Script was called via:
#python train_cross-encoder_mse_multilingual.py microsoft/Multilingual-MiniLM-L12-H384 |