tomaarsen HF staff commited on
Commit
4d238bf
·
verified ·
1 Parent(s): 9712569

Update model metadata

Browse files
Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -2,13 +2,16 @@
2
  language: en
3
  pipeline_tag: zero-shot-classification
4
  tags:
5
- - microsoft/deberta-v3-large
6
  datasets:
7
- - multi_nli
8
- - snli
9
  metrics:
10
  - accuracy
11
  license: apache-2.0
 
 
 
12
  ---
13
 
14
  # Cross-Encoder for Natural Language Inference
@@ -17,9 +20,9 @@ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-En
17
  ## Training Data
18
  The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
19
 
20
- ## Performance
21
- - Accuracy on SNLI-test dataset: 92.20
22
- - Accuracy on MNLI mismatched set: 90.49
23
 
24
  For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
25
 
@@ -66,4 +69,4 @@ sent = "Apple just announced the newest iPhone X"
66
  candidate_labels = ["technology", "sports", "politics"]
67
  res = classifier(sent, candidate_labels)
68
  print(res)
69
- ```
 
2
  language: en
3
  pipeline_tag: zero-shot-classification
4
  tags:
5
+ - transformers
6
  datasets:
7
+ - nyu-mll/multi_nli
8
+ - stanfordnlp/snli
9
  metrics:
10
  - accuracy
11
  license: apache-2.0
12
+ base_model:
13
+ - microsoft/deberta-v3-large
14
+ library_name: sentence-transformers
15
  ---
16
 
17
  # Cross-Encoder for Natural Language Inference
 
20
  ## Training Data
21
  The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
22
 
23
+ ## Performance
24
+ - Accuracy on SNLI-test dataset: 92.20
25
+ - Accuracy on MNLI mismatched set: 90.49
26
 
27
  For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
28
 
 
69
  candidate_labels = ["technology", "sports", "politics"]
70
  res = classifier(sent, candidate_labels)
71
  print(res)
72
+ ```