File size: 12,419 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

import os
import tempfile
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import Optional, Tuple, Union

import torch
import transformers
from composer.models.huggingface import get_hf_config_from_composer_state_dict
from composer.utils import (get_file, maybe_create_object_store_from_uri,
                            parse_uri, safe_torch_load)
from transformers import PretrainedConfig, PreTrainedTokenizerBase

from llmfoundry import MPTConfig, MPTForCausalLM
from llmfoundry.utils import get_hf_tokenizer_from_composer_state_dict
from llmfoundry.utils.huggingface_hub_utils import \
    edit_files_for_hf_compatibility


def write_huggingface_pretrained_from_composer_checkpoint(
    checkpoint_path: Union[Path, str],
    output_path: Union[Path, str],
    output_precision: str = 'fp32',
    local_checkpoint_save_location: Optional[Union[Path, str]] = None
) -> Tuple[PretrainedConfig, Optional[PreTrainedTokenizerBase]]:
    """Convert a Composer checkpoint to a pretrained HF checkpoint folder.

    Write a ``config.json`` and ``pytorch_model.bin``, like
    :meth:`transformers.PreTrainedModel.from_pretrained` expects, from a
    composer checkpoint.

    .. note:: This function will not work properly if you used surgery algorithms when you trained your model. In that case you will want to
        load the model weights using the Composer :class:`~composer.Trainer` with the ``load_path`` argument.
    .. testsetup::
        import torch
        dataset = RandomTextClassificationDataset(size=16, use_keys=True)
        train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
        eval_dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
        import transformers
        from composer.models import HuggingFaceModel
        from composer.trainer import Trainer
        hf_model = transformers.AutoModelForSequenceClassification.from_pretrained('prajjwal1/bert-tiny', num_labels=2)
        hf_tokenizer = transformers.AutoTokenizer.from_pretrained('prajjwal1/bert-tiny')
        composer_model = HuggingFaceModel(hf_model, tokenizer=hf_tokenizer, metrics=[], use_logits=True)
        trainer = Trainer(model=composer_model,
                            train_dataloader=train_dataloader,
                            save_filename='composer-hf-checkpoint.pt',
                            max_duration='1ep',
                            save_folder='./')
        trainer.fit()
        trainer.close()

    Example:
    .. testcode::
        from composer.models import write_huggingface_pretrained_from_composer_checkpoint
        write_huggingface_pretrained_from_composer_checkpoint('composer-hf-checkpoint.pt', './hf-save-pretrained-output')
        loaded_model = transformers.AutoModelForSequenceClassification.from_pretrained('./hf-save-pretrained-output')

    Args:
        checkpoint_path (Union[Path, str]): Path to the composer checkpoint, can be a local path, or a remote path beginning with ``s3://``, or another backend
            supported by :meth:`composer.utils.maybe_create_object_store_from_uri`.
        output_path (Union[Path, str]): Path to the folder to write the output to.
        output_precision (str, optional): The precision of the output weights saved to `pytorch_model.bin`. Can be one of ``fp32``, ``fp16``, or ``bf16``.
        local_checkpoint_save_location (Optional[Union[Path, str]], optional): If specified, where to save the checkpoint file to locally.
                                                                                If the input ``checkpoint_path`` is already a local path, this will be a symlink.
                                                                                Defaults to None, which will use a temporary file.
    """
    dtype = {
        'fp32': torch.float32,
        'fp16': torch.float16,
        'bf16': torch.bfloat16,
    }[output_precision]

    # default local path to a tempfile if path is not provided
    if local_checkpoint_save_location is None:
        tmp_dir = tempfile.TemporaryDirectory()
        local_checkpoint_save_location = Path(
            tmp_dir.name) / 'local-composer-checkpoint.pt'

    # create folder
    os.makedirs(output_path)

    # download the checkpoint file
    print(
        f'Downloading checkpoint from {checkpoint_path} -> {local_checkpoint_save_location}'
    )
    get_file(str(checkpoint_path), str(local_checkpoint_save_location))

    # Load the Composer checkpoint state dict
    print('Loading checkpoint into CPU RAM...')
    composer_state_dict = safe_torch_load(local_checkpoint_save_location)

    if 'state' not in composer_state_dict:
        raise RuntimeError(
            f'"state" is not an available key in the provided composer checkpoint. Is {local_checkpoint_save_location} ill-formed?'
        )

    # Build and save HF Config
    print('#' * 30)
    print('Saving HF Model Config...')
    hf_config = get_hf_config_from_composer_state_dict(composer_state_dict)
    hf_config.torch_dtype = dtype
    hf_config.save_pretrained(output_path)
    print(hf_config)

    # Extract and save the HF tokenizer
    print('#' * 30)
    print('Saving HF Tokenizer...')
    hf_tokenizer = get_hf_tokenizer_from_composer_state_dict(
        composer_state_dict)
    if hf_tokenizer is not None:
        hf_tokenizer.save_pretrained(output_path)
        print(hf_tokenizer)
    else:
        print('Warning! No HF Tokenizer found!')

    # Extract the HF model weights
    print('#' * 30)
    print('Saving HF Model Weights...')
    weights_state_dict = composer_state_dict
    if 'state' in weights_state_dict:
        weights_state_dict = weights_state_dict['state']['model']
    torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
        weights_state_dict, prefix='model.')

    # Convert weights to desired dtype
    for k, v in weights_state_dict.items():
        if isinstance(v, torch.Tensor):
            weights_state_dict[k] = v.to(dtype=dtype)

    # Save weights
    torch.save(weights_state_dict, Path(output_path) / 'pytorch_model.bin')

    print('#' * 30)
    print(f'HF checkpoint folder successfully created at {output_path}.')

    return hf_config, hf_tokenizer


def parse_args() -> Namespace:
    """Parse commandline arguments."""
    parser = ArgumentParser(
        description=
        'Convert a HuggingFace causal LM in a Composer checkpoint into a standard HuggingFace checkpoint folder, and optionally upload to the hub.'
    )
    parser.add_argument('--composer_path', type=str, required=True)
    parser.add_argument('--hf_output_path', type=str, required=True)
    parser.add_argument('--local_checkpoint_save_location',
                        type=str,
                        default=None)
    parser.add_argument('--output_precision',
                        type=str,
                        choices=['fp32', 'fp16', 'bf16'],
                        default='fp32')
    parser.add_argument('--hf_repo_for_upload', type=str, default=None)
    parser.add_argument('--test_uploaded_model', action='store_true')

    return parser.parse_args()


def convert_composer_to_hf(args: Namespace) -> None:
    print()
    print('#' * 30)
    print('Converting Composer checkpoint to HuggingFace checkpoint format...')

    # Register MPT auto classes so that this script works with MPT
    # This script will not work without modification for other custom models,
    # but will work for other HuggingFace causal LMs
    from transformers.models.auto.configuration_auto import CONFIG_MAPPING
    CONFIG_MAPPING._extra_content['mpt'] = MPTConfig
    MPTConfig.register_for_auto_class()
    MPTForCausalLM.register_for_auto_class('AutoModelForCausalLM')

    _, _, local_folder_path = parse_uri(args.hf_output_path)

    config, tokenizer = write_huggingface_pretrained_from_composer_checkpoint(
        checkpoint_path=args.composer_path,
        output_path=local_folder_path,
        output_precision=args.output_precision,
        local_checkpoint_save_location=args.local_checkpoint_save_location)

    dtype = {
        'fp32': torch.float32,
        'fp16': torch.float16,
        'bf16': torch.bfloat16,
    }[args.output_precision]

    print(f'Loading model from {local_folder_path}')
    if config.model_type == 'mpt':
        config.attn_config['attn_impl'] = 'torch'
        config.init_device = 'cpu'

    if config.model_type == 'mpt':
        loaded_hf_model = MPTForCausalLM.from_pretrained(local_folder_path,
                                                         config=config,
                                                         torch_dtype=dtype)
    else:
        loaded_hf_model = transformers.AutoModelForCausalLM.from_pretrained(
            local_folder_path, config=config, torch_dtype=dtype)

    delattr(loaded_hf_model.config, '_name_or_path')

    loaded_hf_model.save_pretrained(local_folder_path)

    print(f'Loading tokenizer from {local_folder_path}')
    tokenizer = transformers.AutoTokenizer.from_pretrained(local_folder_path)
    tokenizer.save_pretrained(local_folder_path)

    # Only need to edit files for MPT because it has custom code
    if config.model_type == 'mpt':
        print('Editing files for HF compatibility...')
        edit_files_for_hf_compatibility(local_folder_path)

    object_store = maybe_create_object_store_from_uri(str(args.hf_output_path))

    if object_store is not None:
        print(
            f'Uploading HF checkpoint folder from {local_folder_path} -> {args.hf_output_path}'
        )
        for file in os.listdir(local_folder_path):
            remote_file = os.path.join(local_folder_path, file)
            local_file = os.path.join(local_folder_path, file)
            object_store.upload_object(remote_file, local_file)

    if args.hf_repo_for_upload is not None:
        from huggingface_hub import HfApi
        api = HfApi()

        print(
            f'Uploading {args.hf_output_path} to HuggingFace Hub at {args.hf_repo_for_upload}'
        )
        api.create_repo(repo_id=args.hf_repo_for_upload,
                        use_auth_token=True,
                        repo_type='model',
                        private=True,
                        exist_ok=True)
        print('Repo created.')

        # ignore the full checkpoint file if we now have sharded checkpoint files
        ignore_patterns = []
        if any(
                f.startswith('pytorch_model-00001')
                for f in os.listdir(args.hf_output_path)):
            ignore_patterns.append('pytorch_model.bin')

        api.upload_folder(folder_path=args.hf_output_path,
                          repo_id=args.hf_repo_for_upload,
                          use_auth_token=True,
                          repo_type='model',
                          ignore_patterns=ignore_patterns)
        print('Folder uploaded.')

        if args.test_uploaded_model:
            print('Testing uploaded model...')
            hub_model = transformers.AutoModelForCausalLM.from_pretrained(
                args.hf_repo_for_upload,
                trust_remote_code=True,
                use_auth_token=True,
                torch_dtype=dtype)
            hub_tokenizer = transformers.AutoTokenizer.from_pretrained(
                args.hf_repo_for_upload,
                trust_remote_code=True,
                use_auth_token=True)

            assert sum(p.numel() for p in hub_model.parameters()) == sum(
                p.numel() for p in loaded_hf_model.parameters())
            assert all(
                str(type(module1)).split('.')[-2:] == str(type(module2)).split(
                    '.')[-2:] for module1, module2 in zip(
                        hub_model.modules(), loaded_hf_model.modules()))

            assert next(
                hub_model.parameters()
            ).dtype == dtype, f'Expected model dtype to be {dtype}, but got {next(hub_model.parameters()).dtype}'
            print(
                hub_tokenizer.batch_decode(
                    hub_model.generate(hub_tokenizer(
                        'MosaicML is', return_tensors='pt').input_ids,
                                       max_new_tokens=10)))

    print(
        'Composer checkpoint successfully converted to HuggingFace checkpoint format.'
    )


if __name__ == '__main__':
    convert_composer_to_hf(parse_args())