File size: 14,564 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import itertools
import os
import random
import time
import warnings
from argparse import ArgumentParser, ArgumentTypeError, Namespace
from contextlib import nullcontext
from typing import Dict, Union

import numpy as np
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer


def get_dtype(dtype: str):
    if dtype == 'fp32':
        return torch.float32
    elif dtype == 'fp16':
        return torch.float16
    elif dtype == 'bf16':
        return torch.bfloat16
    else:
        raise NotImplementedError(
            f'dtype {dtype} is not supported. ' +\
            f'We only support fp32, fp16, and bf16 currently')


def str2bool(v: Union[str, bool]):
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise ArgumentTypeError('Boolean value expected.')


def str_or_bool(v: Union[str, bool]):
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        return v


def parse_args() -> Namespace:
    """Parse commandline arguments."""
    parser = ArgumentParser(
        description='Load a HF CausalLM Model and use it to generate text.')
    parser.add_argument('-n', '--name_or_path', type=str, required=True)
    parser.add_argument(
        '-p',
        '--prompts',
        nargs='+',
        default=[
            'My name is',
            'This is an explanation of deep learning to a five year old. Deep learning is',
        ],
        help='Generation prompts. Use syntax "file::/path/to/prompt.txt" to load a ' +\
             'prompt contained in a txt file.'
        )
    parser.add_argument('--max_seq_len', type=int, default=None)
    parser.add_argument('--max_new_tokens', type=int, default=100)
    parser.add_argument('--max_batch_size', type=int, default=None)
    #####
    # Note: Generation config defaults are set to match Hugging Face defaults
    parser.add_argument('--temperature', type=float, nargs='+', default=[1.0])
    parser.add_argument('--top_k', type=int, nargs='+', default=[50])
    parser.add_argument('--top_p', type=float, nargs='+', default=[1.0])
    parser.add_argument('--repetition_penalty',
                        type=float,
                        nargs='+',
                        default=[1.0])
    parser.add_argument('--no_repeat_ngram_size',
                        type=int,
                        nargs='+',
                        default=[0])
    #####
    parser.add_argument('--seed', type=int, nargs='+', default=[42])
    parser.add_argument('--do_sample',
                        type=str2bool,
                        nargs='?',
                        const=True,
                        default=True)
    parser.add_argument('--use_cache',
                        type=str2bool,
                        nargs='?',
                        const=True,
                        default=True)
    parser.add_argument('--eos_token_id', type=int, default=None)
    parser.add_argument('--pad_token_id', type=int, default=None)
    parser.add_argument('--model_dtype',
                        type=str,
                        choices=['fp32', 'fp16', 'bf16'],
                        default=None)
    parser.add_argument('--autocast_dtype',
                        type=str,
                        choices=['fp32', 'fp16', 'bf16'],
                        default=None)
    parser.add_argument('--warmup',
                        type=str2bool,
                        nargs='?',
                        const=True,
                        default=True)
    parser.add_argument('--trust_remote_code',
                        type=str2bool,
                        nargs='?',
                        const=True,
                        default=True)
    parser.add_argument('--use_auth_token',
                        type=str_or_bool,
                        nargs='?',
                        const=True,
                        default=None)
    parser.add_argument('--revision', type=str, default=None)
    parser.add_argument('--device', type=str, default=None)
    parser.add_argument('--device_map', type=str, default=None)
    parser.add_argument('--attn_impl', type=str, default=None)
    return parser.parse_args()


def load_prompt_string_from_file(prompt_path_str: str):
    if not prompt_path_str.startswith('file::'):
        raise ValueError('prompt_path_str must start with "file::".')
    _, prompt_file_path = prompt_path_str.split('file::', maxsplit=1)
    prompt_file_path = os.path.expanduser(prompt_file_path)
    if not os.path.isfile(prompt_file_path):
        raise FileNotFoundError(
            f'{prompt_file_path=} does not match any existing files.')
    with open(prompt_file_path, 'r') as f:
        prompt_string = ''.join(f.readlines())
    return prompt_string


def maybe_synchronize():
    if torch.cuda.is_available():
        torch.cuda.synchronize()


def main(args: Namespace) -> None:
    # Set device or device_map
    if args.device and args.device_map:
        raise ValueError('You can only set one of `device` and `device_map`.')
    if args.device is not None:
        device = args.device
        device_map = None
    else:
        device = None
        device_map = args.device_map or 'auto'
    print(f'Using {device=} and {device_map=}')

    # Set model_dtype
    if args.model_dtype is not None:
        model_dtype = get_dtype(args.model_dtype)
    else:
        model_dtype = torch.float32
    print(f'Using {model_dtype=}')

    # Load prompts
    prompt_strings = []
    for prompt in args.prompts:
        if prompt.startswith('file::'):
            prompt = load_prompt_string_from_file(prompt)
        prompt_strings.append(prompt)

    # Grab config first
    print(f'Loading HF Config...')
    from_pretrained_kwargs = {
        'use_auth_token': args.use_auth_token,
        'trust_remote_code': args.trust_remote_code,
        'revision': args.revision,
    }
    try:
        config = AutoConfig.from_pretrained(args.name_or_path,
                                            **from_pretrained_kwargs)
        if hasattr(config, 'init_device') and device is not None:
            config.init_device = device
        if args.attn_impl is not None and hasattr(config, 'attn_config'):
            config.attn_config['attn_impl'] = args.attn_impl
        if args.max_seq_len is not None and hasattr(config, 'max_seq_len'):
            config.max_seq_len = args.max_seq_len

    except Exception as e:
        raise RuntimeError(
            'If you are having auth problems, try logging in via `huggingface-cli login` ' +\
            'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... ' +\
            'using your access token from https://huggingface.co/settings/tokens.'
        ) from e

    # Build tokenizer
    print('\nLoading HF tokenizer...')
    tokenizer = AutoTokenizer.from_pretrained(args.name_or_path,
                                              **from_pretrained_kwargs)
    if tokenizer.pad_token_id is None:
        warnings.warn(
            'pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id.'
        )
        tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = 'left'

    # Load HF Model
    print(f'Loading HF model with dtype={model_dtype}...')
    try:
        model = AutoModelForCausalLM.from_pretrained(args.name_or_path,
                                                     config=config,
                                                     torch_dtype=model_dtype,
                                                     device_map=device_map,
                                                     **from_pretrained_kwargs)
        model.eval()
        print(f'n_params={sum(p.numel() for p in model.parameters())}')
        if device is not None:
            print(f'Placing model on {device=}...')
            model.to(device)
    except Exception as e:
        raise RuntimeError(
            'Unable to load HF model. ' +
            'If you are having auth problems, try logging in via `huggingface-cli login` '
            +
            'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... '
            +
            'using your access token from https://huggingface.co/settings/tokens.'
        ) from e

    # Autocast
    if args.autocast_dtype is not None:
        autocast_dtype = get_dtype(args.autocast_dtype)
        autocast_context = torch.autocast(model.device.type, autocast_dtype)
        print(f'Using autocast with dtype={autocast_dtype}...')
    else:
        autocast_context = nullcontext()
        print('NOT using autocast...')

    done_warmup = False

    for temp, topp, topk, repp, nrnz, seed in itertools.product(
            args.temperature, args.top_p, args.top_k, args.repetition_penalty,
            args.no_repeat_ngram_size, args.seed):

        # Seed randomness
        random.seed(seed)
        torch.manual_seed(seed)
        print(f'\nGenerate seed:\n{seed}')

        generate_kwargs = {
            'max_new_tokens': args.max_new_tokens,
            'temperature': temp,
            'top_p': topp,
            'top_k': topk,
            'repetition_penalty': repp,
            'no_repeat_ngram_size': nrnz,
            'use_cache': args.use_cache,
            'do_sample': False if temp == 0 else args.do_sample,
            'eos_token_id': args.eos_token_id or tokenizer.eos_token_id,
            'pad_token_id': args.pad_token_id or tokenizer.pad_token_id,
        }
        print(f'\nGenerate kwargs:\n{generate_kwargs}')

        # Generate function with correct context managers
        def _generate(encoded_inp: Dict[str, torch.Tensor]):
            with torch.no_grad():
                with autocast_context:
                    return model.generate(
                        input_ids=encoded_inp['input_ids'],
                        attention_mask=encoded_inp['attention_mask'],
                        **generate_kwargs,
                    )

        # Split into prompt batches
        batches = []
        if args.max_batch_size:
            bs = args.max_batch_size
            batches = [
                prompt_strings[i:i + bs]
                for i in range(0, len(prompt_strings), bs)
            ]

        else:
            batches = [prompt_strings]

        for batch in batches:
            print(f'\nTokenizing prompts...')
            maybe_synchronize()
            encode_start = time.time()
            encoded_inp = tokenizer(batch, return_tensors='pt', padding=True)
            for key, value in encoded_inp.items():
                encoded_inp[key] = value.to(model.device)
            maybe_synchronize()
            encode_end = time.time()
            input_tokens = torch.sum(
                encoded_inp['input_ids'] !=
                tokenizer.pad_token_id,  # type: ignore
                axis=1).numpy(force=True)

            # Warmup
            if args.warmup and (not done_warmup):
                print('Warming up...')
                _ = _generate(encoded_inp)
                done_warmup = True

            # Run HF generate
            print('Generating responses...')
            maybe_synchronize()
            gen_start = time.time()
            encoded_gen = _generate(encoded_inp)
            maybe_synchronize()
            gen_end = time.time()

            decode_start = time.time()
            decoded_gen = tokenizer.batch_decode(encoded_gen,
                                                 skip_special_tokens=True)
            maybe_synchronize()
            decode_end = time.time()
            gen_tokens = torch.sum(encoded_gen != tokenizer.pad_token_id,
                                   axis=1).numpy(force=True)  # type: ignore

            # Print generations
            delimiter = '#' * 100
            # decode the encoded prompt to handle the case when the tokenizer
            # trims extra spaces or does other pre-tokenization things
            effective_prompts = tokenizer.batch_decode(encoded_inp['input_ids'],
                                                       skip_special_tokens=True)
            for idx, (effective_prompt, prompt, gen) in enumerate(
                    zip(effective_prompts, batch, decoded_gen)):
                continuation = gen[len(effective_prompt):]
                print(delimiter)
                if len(continuation) > 0:
                    print('\033[92m' + prompt + '\033[0m' + continuation)
                else:
                    print('Warning. No non-special output tokens generated.')
                    print(
                        'This can happen if the generation only contains padding/eos tokens.'
                    )
                    print('Debug:')
                    full_generation = tokenizer.batch_decode(
                        encoded_gen, skip_special_tokens=False)[idx]
                    print('\033[92m' + 'Prompt:\n' + prompt + '\033[0m')
                    print('Full generation:\n' + full_generation)

            print(delimiter)

            # Print timing info
            bs = len(batch)
            # ensure that gen_tokens >= 1 in case model only generated padding tokens
            gen_tokens = np.maximum(gen_tokens, np.ones_like(gen_tokens))
            output_tokens = gen_tokens - input_tokens
            total_input_tokens = input_tokens.sum()
            total_output_tokens = output_tokens.sum()

            encode_latency = 1000 * (encode_end - encode_start)
            gen_latency = 1000 * (gen_end - gen_start)
            decode_latency = 1000 * (decode_end - decode_start)
            total_latency = encode_latency + gen_latency + decode_latency

            latency_per_output_token = total_latency / total_output_tokens
            output_tok_per_sec = 1000 / latency_per_output_token
            print(f'{bs=}, {input_tokens=}, {output_tokens=}')
            print(f'{total_input_tokens=}, {total_output_tokens=}')
            print(
                f'{encode_latency=:.2f}ms, {gen_latency=:.2f}ms, {decode_latency=:.2f}ms, {total_latency=:.2f}ms'
            )
            print(f'{latency_per_output_token=:.2f}ms/tok')
            print(f'{output_tok_per_sec=:.2f}tok/sec')


if __name__ == '__main__':
    main(parse_args())