File size: 14,564 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import itertools
import os
import random
import time
import warnings
from argparse import ArgumentParser, ArgumentTypeError, Namespace
from contextlib import nullcontext
from typing import Dict, Union
import numpy as np
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
def get_dtype(dtype: str):
if dtype == 'fp32':
return torch.float32
elif dtype == 'fp16':
return torch.float16
elif dtype == 'bf16':
return torch.bfloat16
else:
raise NotImplementedError(
f'dtype {dtype} is not supported. ' +\
f'We only support fp32, fp16, and bf16 currently')
def str2bool(v: Union[str, bool]):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
def str_or_bool(v: Union[str, bool]):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
return v
def parse_args() -> Namespace:
"""Parse commandline arguments."""
parser = ArgumentParser(
description='Load a HF CausalLM Model and use it to generate text.')
parser.add_argument('-n', '--name_or_path', type=str, required=True)
parser.add_argument(
'-p',
'--prompts',
nargs='+',
default=[
'My name is',
'This is an explanation of deep learning to a five year old. Deep learning is',
],
help='Generation prompts. Use syntax "file::/path/to/prompt.txt" to load a ' +\
'prompt contained in a txt file.'
)
parser.add_argument('--max_seq_len', type=int, default=None)
parser.add_argument('--max_new_tokens', type=int, default=100)
parser.add_argument('--max_batch_size', type=int, default=None)
#####
# Note: Generation config defaults are set to match Hugging Face defaults
parser.add_argument('--temperature', type=float, nargs='+', default=[1.0])
parser.add_argument('--top_k', type=int, nargs='+', default=[50])
parser.add_argument('--top_p', type=float, nargs='+', default=[1.0])
parser.add_argument('--repetition_penalty',
type=float,
nargs='+',
default=[1.0])
parser.add_argument('--no_repeat_ngram_size',
type=int,
nargs='+',
default=[0])
#####
parser.add_argument('--seed', type=int, nargs='+', default=[42])
parser.add_argument('--do_sample',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--use_cache',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--eos_token_id', type=int, default=None)
parser.add_argument('--pad_token_id', type=int, default=None)
parser.add_argument('--model_dtype',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default=None)
parser.add_argument('--autocast_dtype',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default=None)
parser.add_argument('--warmup',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--trust_remote_code',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--use_auth_token',
type=str_or_bool,
nargs='?',
const=True,
default=None)
parser.add_argument('--revision', type=str, default=None)
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--device_map', type=str, default=None)
parser.add_argument('--attn_impl', type=str, default=None)
return parser.parse_args()
def load_prompt_string_from_file(prompt_path_str: str):
if not prompt_path_str.startswith('file::'):
raise ValueError('prompt_path_str must start with "file::".')
_, prompt_file_path = prompt_path_str.split('file::', maxsplit=1)
prompt_file_path = os.path.expanduser(prompt_file_path)
if not os.path.isfile(prompt_file_path):
raise FileNotFoundError(
f'{prompt_file_path=} does not match any existing files.')
with open(prompt_file_path, 'r') as f:
prompt_string = ''.join(f.readlines())
return prompt_string
def maybe_synchronize():
if torch.cuda.is_available():
torch.cuda.synchronize()
def main(args: Namespace) -> None:
# Set device or device_map
if args.device and args.device_map:
raise ValueError('You can only set one of `device` and `device_map`.')
if args.device is not None:
device = args.device
device_map = None
else:
device = None
device_map = args.device_map or 'auto'
print(f'Using {device=} and {device_map=}')
# Set model_dtype
if args.model_dtype is not None:
model_dtype = get_dtype(args.model_dtype)
else:
model_dtype = torch.float32
print(f'Using {model_dtype=}')
# Load prompts
prompt_strings = []
for prompt in args.prompts:
if prompt.startswith('file::'):
prompt = load_prompt_string_from_file(prompt)
prompt_strings.append(prompt)
# Grab config first
print(f'Loading HF Config...')
from_pretrained_kwargs = {
'use_auth_token': args.use_auth_token,
'trust_remote_code': args.trust_remote_code,
'revision': args.revision,
}
try:
config = AutoConfig.from_pretrained(args.name_or_path,
**from_pretrained_kwargs)
if hasattr(config, 'init_device') and device is not None:
config.init_device = device
if args.attn_impl is not None and hasattr(config, 'attn_config'):
config.attn_config['attn_impl'] = args.attn_impl
if args.max_seq_len is not None and hasattr(config, 'max_seq_len'):
config.max_seq_len = args.max_seq_len
except Exception as e:
raise RuntimeError(
'If you are having auth problems, try logging in via `huggingface-cli login` ' +\
'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... ' +\
'using your access token from https://huggingface.co/settings/tokens.'
) from e
# Build tokenizer
print('\nLoading HF tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.name_or_path,
**from_pretrained_kwargs)
if tokenizer.pad_token_id is None:
warnings.warn(
'pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id.'
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load HF Model
print(f'Loading HF model with dtype={model_dtype}...')
try:
model = AutoModelForCausalLM.from_pretrained(args.name_or_path,
config=config,
torch_dtype=model_dtype,
device_map=device_map,
**from_pretrained_kwargs)
model.eval()
print(f'n_params={sum(p.numel() for p in model.parameters())}')
if device is not None:
print(f'Placing model on {device=}...')
model.to(device)
except Exception as e:
raise RuntimeError(
'Unable to load HF model. ' +
'If you are having auth problems, try logging in via `huggingface-cli login` '
+
'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... '
+
'using your access token from https://huggingface.co/settings/tokens.'
) from e
# Autocast
if args.autocast_dtype is not None:
autocast_dtype = get_dtype(args.autocast_dtype)
autocast_context = torch.autocast(model.device.type, autocast_dtype)
print(f'Using autocast with dtype={autocast_dtype}...')
else:
autocast_context = nullcontext()
print('NOT using autocast...')
done_warmup = False
for temp, topp, topk, repp, nrnz, seed in itertools.product(
args.temperature, args.top_p, args.top_k, args.repetition_penalty,
args.no_repeat_ngram_size, args.seed):
# Seed randomness
random.seed(seed)
torch.manual_seed(seed)
print(f'\nGenerate seed:\n{seed}')
generate_kwargs = {
'max_new_tokens': args.max_new_tokens,
'temperature': temp,
'top_p': topp,
'top_k': topk,
'repetition_penalty': repp,
'no_repeat_ngram_size': nrnz,
'use_cache': args.use_cache,
'do_sample': False if temp == 0 else args.do_sample,
'eos_token_id': args.eos_token_id or tokenizer.eos_token_id,
'pad_token_id': args.pad_token_id or tokenizer.pad_token_id,
}
print(f'\nGenerate kwargs:\n{generate_kwargs}')
# Generate function with correct context managers
def _generate(encoded_inp: Dict[str, torch.Tensor]):
with torch.no_grad():
with autocast_context:
return model.generate(
input_ids=encoded_inp['input_ids'],
attention_mask=encoded_inp['attention_mask'],
**generate_kwargs,
)
# Split into prompt batches
batches = []
if args.max_batch_size:
bs = args.max_batch_size
batches = [
prompt_strings[i:i + bs]
for i in range(0, len(prompt_strings), bs)
]
else:
batches = [prompt_strings]
for batch in batches:
print(f'\nTokenizing prompts...')
maybe_synchronize()
encode_start = time.time()
encoded_inp = tokenizer(batch, return_tensors='pt', padding=True)
for key, value in encoded_inp.items():
encoded_inp[key] = value.to(model.device)
maybe_synchronize()
encode_end = time.time()
input_tokens = torch.sum(
encoded_inp['input_ids'] !=
tokenizer.pad_token_id, # type: ignore
axis=1).numpy(force=True)
# Warmup
if args.warmup and (not done_warmup):
print('Warming up...')
_ = _generate(encoded_inp)
done_warmup = True
# Run HF generate
print('Generating responses...')
maybe_synchronize()
gen_start = time.time()
encoded_gen = _generate(encoded_inp)
maybe_synchronize()
gen_end = time.time()
decode_start = time.time()
decoded_gen = tokenizer.batch_decode(encoded_gen,
skip_special_tokens=True)
maybe_synchronize()
decode_end = time.time()
gen_tokens = torch.sum(encoded_gen != tokenizer.pad_token_id,
axis=1).numpy(force=True) # type: ignore
# Print generations
delimiter = '#' * 100
# decode the encoded prompt to handle the case when the tokenizer
# trims extra spaces or does other pre-tokenization things
effective_prompts = tokenizer.batch_decode(encoded_inp['input_ids'],
skip_special_tokens=True)
for idx, (effective_prompt, prompt, gen) in enumerate(
zip(effective_prompts, batch, decoded_gen)):
continuation = gen[len(effective_prompt):]
print(delimiter)
if len(continuation) > 0:
print('\033[92m' + prompt + '\033[0m' + continuation)
else:
print('Warning. No non-special output tokens generated.')
print(
'This can happen if the generation only contains padding/eos tokens.'
)
print('Debug:')
full_generation = tokenizer.batch_decode(
encoded_gen, skip_special_tokens=False)[idx]
print('\033[92m' + 'Prompt:\n' + prompt + '\033[0m')
print('Full generation:\n' + full_generation)
print(delimiter)
# Print timing info
bs = len(batch)
# ensure that gen_tokens >= 1 in case model only generated padding tokens
gen_tokens = np.maximum(gen_tokens, np.ones_like(gen_tokens))
output_tokens = gen_tokens - input_tokens
total_input_tokens = input_tokens.sum()
total_output_tokens = output_tokens.sum()
encode_latency = 1000 * (encode_end - encode_start)
gen_latency = 1000 * (gen_end - gen_start)
decode_latency = 1000 * (decode_end - decode_start)
total_latency = encode_latency + gen_latency + decode_latency
latency_per_output_token = total_latency / total_output_tokens
output_tok_per_sec = 1000 / latency_per_output_token
print(f'{bs=}, {input_tokens=}, {output_tokens=}')
print(f'{total_input_tokens=}, {total_output_tokens=}')
print(
f'{encode_latency=:.2f}ms, {gen_latency=:.2f}ms, {decode_latency=:.2f}ms, {total_latency=:.2f}ms'
)
print(f'{latency_per_output_token=:.2f}ms/tok')
print(f'{output_tok_per_sec=:.2f}tok/sec')
if __name__ == '__main__':
main(parse_args())
|