File size: 23,972 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import logging
import os
from typing import Tuple, Union

import datasets as hf_datasets
import torch
from composer.utils import dist, get_file, parse_uri
from omegaconf import DictConfig
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase

from llmfoundry.data.finetuning.collator import Seq2SeqFinetuningCollator
from llmfoundry.data.finetuning.tasks import dataset_constructor
from llmfoundry.data.packing import BinPackWrapper

log = logging.getLogger(__name__)

# HuggingFace hardcodes the ignore index to -100
_HF_IGNORE_INDEX = -100


def build_finetuning_dataloader(cfg: DictConfig,
                                tokenizer: PreTrainedTokenizerBase,
                                device_batch_size: int) -> DataLoader:
    """Builds a finetuning dataloader for training or evaluating.

    The underlying dataset can be built through one of two code paths:
        1. As a HuggingFace dataset, via `datasets.load_dataset(...)`
        2. As a streaming dataset
    You will need to set slightly different dataset config fields depending
    on which you intend to use, as explained below.

    Args:
        cfg (DictConfig): An omegaconf dictionary used to configure the loader:
            cfg.name (str): The type of dataloader to build. Must = "finetuning".
            ---
            *** HuggingFace dataset config fields ***
            cfg.dataset.hf_name (str, optional): The name of the HuggingFace dataset
                to use. Can also be a remote http(s) directory or object store bucket
                containing the file {split}.jsonl in the format (prompt, response),
                in which case the builder will create a HuggingFace dataset.
            cfg.dataset.hf_kwargs (DictConfig, optional): Additional kwargs to
                pass to `datasets.load_dataset`, which can be used to load
                a dataset from local files.
            cfg.dataset.preprocessing_fn (str, optional): The name/import path of
                the preprocessing function to use for formatting the data examples.
                If ``None`` (default), the builder will use the preprocessing function
                    registered under `hf_name` (see `tasks.py`), if one exists,
                    otherwise it will skip preprocessing.
                If `preprocessing_fn` corresponds to a registered preprocessing
                    function in `tasks.py`, the builder will use that.
                Otherwise, it will interpret `preprocessing_fn` as a
                    "import.path:function_name" import path; e.g., it will call
                    `from import.path import function_name` and use the imported
                    function as the preprocessing function.
            *** Streaming dataset config fields ***
            cfg.dataset.remote (str, optional): Location of a MDS-formatted
                streaming dataset to use. Setting this will tell the builder
                to create a streaming dataset rather than a HuggingFace dataset.
            cfg.dataset.local (str, optional): Local path where remote data
                will be streamed to. Only valid if `cfg.dataset.remote` has
                also been set.
            *** Shared dataset configs fields ***
            cfg.dataset.max_seq_len (int): The maximum length of sequences
                in the batch. See :class:`Seq2SeqFinetuningCollator` docstring
                for details.
            cfg.dataset.decoder_only_format (bool): Whether to format the
                examples for a decoder-only model. See :class:`Seq2SeqFinetuningCollator`
                docstring for details.
            cfg.dataset.allow_pad_trimming (bool, optional): Whether to allow
                the collator to trim padding. See :class:`Seq2SeqFinetuningCollator`
                docstring for details. Default: ``False``.
            cfg.dataset.packing_ratio (float, optional): If provided, this invokes
                a collator wrapper that packs `device_batch_size*packing_ratio`
                raw examples into `device_batch_size` packed examples. This helps
                minimize padding while preserving sequence integrity.
                This adds `sequence_id` to the batch, which indicates which unique
                sequence each token belongs to.
                Note: Using this feature will not change device_batch_size but it
                    will determine the number of raw examples consumed by the dataloader
                    per batch. Some examples may be discarded if they do not fit when
                    packing.
                    Select `packing_ratio` **carefully** based on the dataset
                    statistics, `max_seq_len`, and tolerance for discarding samples!
                    The packing code in `../packing.py` provides a script that can help
                    you choose the best `packing_ratio`.
            cfg.dataset.shuffle (bool): Whether to shuffle the dataset.
            ___
            See :class:`StreamingFinetuningDataset` for info on other standard config
                options within `cfg.dataset` that will be passed as kwargs if
                using the streaming codepath.
            ---
            See :class:`DataLoader` for standard argument options to the pytorch
                dataloader, such as `cfg.drop_last`, `cfg.num_workers`, etc.
        tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to
            prepare the data from raw text. Any missing sentinel tokens will
            be added by the collator.
        device_batch_size (int): The size of the batches (number of examples)
            that the dataloader will produce.

    Returns:
        A pytorch dataloader

    Note:
        You can run the script inside `../packing.py` to quickly test the
        padding/waste rates for different `cfg.dataset.packing_ratio` choices,
        given a starting workload YAML.
    """
    _validate_config(cfg.dataset)

    # Use EOS as the pad token if none exists
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    dataset = None  # for pyright
    if cfg.dataset.get('remote') is not None:
        dataset = dataset_constructor.build_from_streaming(
            tokenizer=tokenizer,
            local=cfg.dataset.local,
            remote=cfg.dataset.get('remote', None),
            split=cfg.dataset.get('split', None),
            download_retry=cfg.dataset.get('download_retry', 2),
            download_timeout=cfg.dataset.get('download_timeout', 60),
            validate_hash=cfg.dataset.get('validate_hash', None),
            keep_zip=cfg.dataset.get('keep_zip', False),
            epoch_size=cfg.dataset.get('epoch_size', None),
            predownload=cfg.dataset.get('predownload', None),
            cache_limit=cfg.dataset.get('cache_limit', None),
            partition_algo=cfg.dataset.get('partition_algo', 'orig'),
            num_canonical_nodes=cfg.dataset.get('num_canonical_nodes', None),
            batch_size=device_batch_size,
            shuffle=cfg.dataset.get('shuffle', False),
            shuffle_algo=cfg.dataset.get('shuffle_algo', 'py1b'),
            shuffle_seed=cfg.dataset.get('shuffle_seed', 9176),
            shuffle_block_size=cfg.dataset.get('shuffle_block_size', 1 << 18),
            sampling_method=cfg.dataset.get('sampling_method', 'balanced'),
            sampling_granularity=cfg.dataset.get('sampling_granularity', 1),
            batching_method=cfg.dataset.get('batching_method', 'random'),
        )

        collate_fn, dataloader_batch_size = _build_collate_fn(
            cfg.dataset, tokenizer, device_batch_size)

        return DataLoader(
            dataset,
            collate_fn=collate_fn,
            batch_size=dataloader_batch_size,
            drop_last=cfg.drop_last,
            num_workers=cfg.num_workers,
            pin_memory=cfg.get('pin_memory', True),
            prefetch_factor=cfg.get('prefetch_factor', 2),
            persistent_workers=cfg.get('persistent_workers', True),
            timeout=cfg.get('timeout', 0),
        )

    else:
        backend, _, _ = parse_uri(cfg.dataset.hf_name)
        if backend not in ['', None]:
            if cfg.dataset.get('split') is None:
                raise ValueError(
                    'When using a HuggingFace dataset from a URL, you must set the ' + \
                    '`split` key in the dataset config.'
                )
            dataset = _build_hf_dataset_from_remote(cfg, tokenizer)
        else:
            dataset = dataset_constructor.build_from_hf(
                cfg.dataset,
                max_seq_len=cfg.dataset.max_seq_len,
                tokenizer=tokenizer,
            )

        collate_fn, dataloader_batch_size = _build_collate_fn(
            cfg.dataset, tokenizer, device_batch_size)

        if cfg.drop_last:
            world_size = dist.get_world_size()
            minimum_dataset_size = world_size * dataloader_batch_size
            if hasattr(dataset, '__len__'):
                full_dataset_size = len(dataset)
                if full_dataset_size < minimum_dataset_size:
                    raise ValueError(
                        f'Your dataset (name={cfg.dataset.hf_name}, split={cfg.dataset.split}) '
                        +
                        f'has {full_dataset_size} samples, but your minimum batch size '
                        +
                        f'is {minimum_dataset_size} because you are running on {world_size} gpus and '
                        +
                        f'your per device batch size is {dataloader_batch_size}. Please increase the number '
                        +
                        f'of samples in your dataset to at least {minimum_dataset_size}.'
                    )

        assert dataset is not None
        return DataLoader(
            dataset,
            collate_fn=collate_fn,
            batch_size=dataloader_batch_size,
            drop_last=cfg.drop_last,
            sampler=dist.get_sampler(dataset,
                                     drop_last=cfg.drop_last,
                                     shuffle=cfg.dataset.shuffle),
            num_workers=cfg.num_workers,
            pin_memory=cfg.get('pin_memory', True),
            prefetch_factor=cfg.get('prefetch_factor', 2),
            persistent_workers=cfg.get('persistent_workers', True),
            timeout=cfg.get('timeout', 0),
        )


def _validate_config(dataset_cfg: DictConfig) -> None:
    """Validates the dataset configuration.

    Makes sure that the dataset is properly configured for either
    a HuggingFace dataset or a streaming dataset. Must be valid for one or
    the other.

    Args:
        dataset_cfg (DictConfig): The dataset configuration to be validated.

    Raises:
        ValueError: If the dataset configuration does not meet the requirements.
    """
    if dataset_cfg.get('hf_name') is not None:
        # Using the HuggingFace dataset codepath
        illegal_keys = ['local', 'remote']
        discovered_illegal_keys = []
        for key in illegal_keys:
            if dataset_cfg.get(key) is not None:
                discovered_illegal_keys.append('`' + key + '`')
        if discovered_illegal_keys:
            raise ValueError(
                'The dataset config sets a value for `hf_name` as well as the ' +\
                f'following keys: {", ".join(discovered_illegal_keys)}.\n' +\
                'Those keys are used when building from a streaming dataset, but ' +\
                'setting `hf_name` instructs the dataset to build from a HuggingFace dataset.'
            )
    elif dataset_cfg.get('remote') is not None:
        # Using the streaming dataset codepath
        illegal_keys = ['hf_name', 'hf_kwargs', 'preprocessing_fn']
        discovered_illegal_keys = []
        for key in illegal_keys:
            if dataset_cfg.get(key) is not None:
                discovered_illegal_keys.append('`' + key + '`')
        if discovered_illegal_keys:
            raise ValueError(
                'The dataset config sets a value for `remote` as well as the ' +\
                f'following keys: {", ".join(discovered_illegal_keys)}.\n' +\
                'Those keys are used when building from a HuggingFace dataset, but ' +\
                'setting `remote` instructs the dataset to build from a streaming dataset.'
            )
        if dataset_cfg.get('local') is None:
            raise ValueError(
                'Using a streaming dataset requires setting both `remote` and `local`, ' +\
                'but dataset.local is None.'
            )
    else:
        raise ValueError(
            'In the dataset config, you must set either `hf_name` to use a ' +\
            'HuggingFace dataset or set `remote` to use a streaming ' +\
            'dataset, but both were None.'
        )


def _build_hf_dataset_from_remote(
    cfg: DictConfig, tokenizer: PreTrainedTokenizerBase
) -> Union[hf_datasets.DatasetDict, hf_datasets.Dataset,
           hf_datasets.IterableDatasetDict, hf_datasets.IterableDataset]:
    """Builds a dataset from a remote object store.

    This function supports 'jsonl', 'csv', and 'parquet' file formats for the dataset. It will attempt to download
    the dataset, then once it is downloaded, convert it into HuggingFace ``datasets`` format, and then return this
    dataset.

    The function also ensures synchronicity across multiple processes during the file download. It creates a signal
    file that is used to synchronize the start of the download across different processes. Once the download is
    completed, the function removes the signal file.

    Args:
        cfg (DictConfig): The configuration dictionary containing the necessary parameters to load the dataset.
            This includes:
                - dataset.hf_name: The path of the HuggingFace dataset to download.
                - dataset.split: The dataset split to download (e.g., 'train', 'validation', 'test').
                - dataset.max_seq_len: The maximum sequence length for tokenizing the dataset.

        tokenizer (Tokenizer): The tokenizer to be used to tokenize the dataset.

    Returns:
        Dataset: A HuggingFace dataset built from the remote file, prepared and tokenized for fine-tuning the model.

    Raises:
        FileNotFoundError: Raised if the dataset file cannot be found with any of the supported extensions.
    """
    supported_extensions = ['jsonl', 'csv', 'parquet']
    # HF datasets does not support a split with dashes, so we replace dashes
    # with underscores in the destination split.
    destination_split = cfg.dataset.split.replace('-', '_')
    finetune_dir = os.path.join(
        os.path.dirname(
            os.path.dirname(os.path.dirname(os.path.realpath(__file__)))),
        'downloaded_finetuning',
        destination_split if destination_split != 'data' else 'data_not',
    )
    os.makedirs(finetune_dir, exist_ok=True)
    for extension in supported_extensions:
        name = f'{cfg.dataset.hf_name.strip("/")}/{cfg.dataset.split}.{extension}'
        destination = str(
            os.path.abspath(
                os.path.join(
                    finetune_dir, 'data',
                    f'{destination_split}-00000-of-00001.{extension}')))

        # Since we don't know exactly what the extension will be, since it is one of a list
        # use a signal file to wait for instead of the desired file
        signal_file_path = os.path.join(
            finetune_dir, f'.node_{dist.get_node_rank()}_local_rank0_completed')
        if dist.get_local_rank() == 0:
            try:
                get_file(path=name, destination=destination, overwrite=True)
            except FileNotFoundError as e:
                if extension == supported_extensions[-1]:
                    files_searched = [
                        f'{cfg.dataset.hf_name}/{cfg.dataset.split}.{ext}'
                        for ext in supported_extensions
                    ]
                    raise FileNotFoundError(
                        f'Could not find a file with any of ' + \
                        f'the supported extensions: {supported_extensions}\n' + \
                        f'at {files_searched}'
                    ) from e
                else:
                    log.debug(
                        f'Could not find {name}, looking for another extension')
                continue

            os.makedirs(os.path.dirname(signal_file_path), exist_ok=True)
            with open(signal_file_path, 'wb') as f:
                f.write(b'local_rank0_completed_download')

        # Avoid the collective call until the local rank zero has finished trying to download the checkpoint
        # so that we don't timeout for large downloads. This syncs all processes on the node
        with dist.local_rank_zero_download_and_wait(signal_file_path):
            # Then, wait to ensure every node has finished downloading the checkpoint
            dist.barrier()

        # clean up signal file
        if dist.get_local_rank() == 0:
            os.remove(signal_file_path)
        dist.barrier()

        cfg.dataset.hf_name = finetune_dir
        log.info(cfg.dataset)
        dataset = dataset_constructor.build_from_hf(
            cfg.dataset,
            max_seq_len=cfg.dataset.max_seq_len,
            tokenizer=tokenizer,
        )
        return dataset


def _build_collate_fn(
    dataset_cfg: DictConfig, tokenizer: PreTrainedTokenizerBase,
    device_batch_size: int
) -> Tuple[Union[Seq2SeqFinetuningCollator, BinPackWrapper], int]:
    collate_fn = Seq2SeqFinetuningCollator(
        tokenizer=tokenizer,
        max_seq_len=dataset_cfg.max_seq_len,
        decoder_only_format=dataset_cfg.decoder_only_format,
        allow_pad_trimming=dataset_cfg.get('allow_pad_trimming', False),
    )

    packing_ratio = dataset_cfg.get('packing_ratio')
    if packing_ratio is None:
        if dataset_cfg.get('max_leftover_bins_to_keep') is not None:
            raise ValueError(
                'dataset.max_leftover_bins_to_keep has been defined, ' +\
                'but dataset.packing_ratio has not been set. Please set ' +\
                'the latter to turn on packing or remove the former from the config.')
        return collate_fn, device_batch_size

    if packing_ratio == 1.0:
        return collate_fn, device_batch_size
    elif packing_ratio < 1.0:
        raise ValueError('packing_ratio must be >= 1, if supplied')

    if not dataset_cfg.decoder_only_format:
        raise NotImplementedError(
            'On-the-fly packing is currently only supported for decoder-only formats.'
        )

    collate_fn = BinPackWrapper(
        collator=collate_fn,
        target_batch_size=device_batch_size,
        max_seq_len=dataset_cfg.max_seq_len,
        pad_token_id=tokenizer.pad_token_id,
        padding_side=tokenizer.padding_side,
        max_leftover_bins_to_keep=dataset_cfg.get('max_leftover_bins_to_keep'),
    )
    n_examples_to_pack = int(device_batch_size * packing_ratio)
    return collate_fn, n_examples_to_pack


if __name__ == '__main__':
    import torch
    from omegaconf import OmegaConf as om

    from llmfoundry.utils import build_tokenizer
    cfg = om.create({
        'dataset': {
            'hf_name':
                'tatsu-lab/alpaca',
            'preprocessing_fn':
                'llmfoundry.data.finetuning.tasks:alpaca_preprocessing_function',
            'split':
                'train',
            'packing_ratio':
                18.0,
            'max_seq_len':
                2048,
            'decoder_only_format':
                True,
            'separator_text':
                False,
            'allow_pad_trimming':
                False,
            'num_canonical_nodes':
                472,
            'shuffle':
                True,
        },
        'drop_last': False,
        'num_workers': 0,
        'pin_memory': False,
        'prefetch_factor': 2,
        'persistent_workers': False,
        'timeout': 0
    })

    tokenizer_name = 'EleutherAI/gpt-neox-20b'
    tokenizer_kwargs = {'model_max_length': cfg.dataset.max_seq_len}
    tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)

    device_batch_size = 2
    dataloader = build_finetuning_dataloader(cfg, tokenizer, device_batch_size)

    packing = cfg.dataset.get('packing_ratio') is not None

    for i, batch in enumerate(dataloader):
        if i >= 5:
            break
        print(f'-----Batch {i}-----')
        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                print(k, v.shape)
            else:
                print(k, v)
        for j in range(device_batch_size):
            print(f'--- Sample {j} ---')
            if cfg.dataset.decoder_only_format:
                if packing:
                    for subseq in range(int(batch['sequence_id'][j].max()) + 1):
                        is_subseq = batch['sequence_id'][j] == subseq
                        print(
                            '\033[93m{}\033[00m\n'.format('INPUT IDS:'),
                            tokenizer.decode(batch['input_ids'][
                                j,
                                torch.logical_and(
                                    is_subseq, batch['attention_mask'][j] ==
                                    1)],
                                             skip_special_tokens=False))
                        print(
                            '\033[92m{}\033[00m\n'.format('CONTEXT:  '),
                            tokenizer.decode(batch['input_ids'][
                                j,
                                torch.logical_and(
                                    is_subseq, batch['bidirectional_mask'][j] ==
                                    1)],
                                             skip_special_tokens=False))
                        print(
                            '\033[91m{}\033[00m\n'.format('TARGET:   '),
                            tokenizer.decode(batch['input_ids'][
                                j,
                                torch.logical_and(
                                    is_subseq,
                                    batch['labels'][j] != _HF_IGNORE_INDEX)],
                                             skip_special_tokens=False))
                else:
                    print(
                        '\033[93m{}\033[00m\n'.format('INPUT IDS:'),
                        tokenizer.decode(
                            batch['input_ids'][j,
                                               batch['attention_mask'][j] == 1],
                            skip_special_tokens=False))
                    print(
                        '\033[92m{}\033[00m\n'.format('CONTEXT:  '),
                        tokenizer.decode(batch['input_ids'][
                            j, batch['bidirectional_mask'][j] == 1],
                                         skip_special_tokens=False))
                    print(
                        '\033[91m{}\033[00m\n'.format('TARGET:   '),
                        tokenizer.decode(batch['input_ids'][
                            j, batch['labels'][j] != _HF_IGNORE_INDEX],
                                         skip_special_tokens=False))
            else:
                print(
                    '\033[92m{}\033[00m\n'.format('CONTEXT:  '),
                    tokenizer.decode(
                        batch['input_ids'][j, batch['attention_mask'][j] == 1],
                        skip_special_tokens=False))
                print(
                    '\033[91m{}\033[00m\n'.format('TARGET:   '),
                    tokenizer.decode(batch['labels'][
                        j, batch['decoder_attention_mask'][j] == 1],
                                     skip_special_tokens=False))
        print('   ')