File size: 39,222 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

"""Converts Huggingface Causal LM to Prefix LM.

Conversion does lightweight surgery on a HuggingFace
Causal LM to convert it to a Prefix LM.

Prefix LMs accepts a `bidirectional_mask` input in `forward`
and treat the input prompt as the prefix in `generate`.
"""

import math
import warnings
from types import MethodType
from typing import Any, List, MutableMapping, Optional, Tuple, Union

import torch
from transformers.models.bloom.modeling_bloom import (
    BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel,
    CausalLMOutputWithCrossAttentions, CrossEntropyLoss)
from transformers.models.bloom.modeling_bloom import \
    _expand_mask as _expand_mask_bloom
from transformers.models.bloom.modeling_bloom import \
    _make_causal_mask as _make_causal_mask_bloom
from transformers.models.bloom.modeling_bloom import logging
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
from transformers.models.opt.modeling_opt import OPTForCausalLM
from transformers.models.opt.modeling_opt import \
    _expand_mask as _expand_mask_opt
from transformers.models.opt.modeling_opt import \
    _make_causal_mask as _make_causal_mask_opt

logger = logging.get_logger(__name__)

_SUPPORTED_GPT_MODELS = (
    GPT2LMHeadModel,
    GPTJForCausalLM,
    GPTNeoForCausalLM,
    GPTNeoXForCausalLM,
)

CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM,
                         GPTNeoXForCausalLM,]


def _convert_gpt_causal_lm_to_prefix_lm(
        model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
    """Converts a GPT-style Causal LM to a Prefix LM.

    Supported HuggingFace model classes:
        - `GPT2LMHeadModel`
        - `GPTNeoForCausalLM`
        - `GPTNeoXForCausalLM`
        - `GPTJForCausalLM`

    See `convert_hf_causal_lm_to_prefix_lm` for more details.
    """
    if hasattr(model, '_prefix_lm_converted'):
        return model

    assert isinstance(model, _SUPPORTED_GPT_MODELS)
    assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'

    def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
        """Helper that gets a list of the model's attention modules.

        Each module has a `bias` buffer used for causal masking. The Prefix LM
        conversion adds logic to dynamically manipulate these biases to support
        Prefix LM attention masking.
        """
        attn_modules = []

        if isinstance(model, GPTNeoXForCausalLM):
            blocks = model.gpt_neox.layers
        else:
            blocks = model.transformer.h

        for block in blocks:
            if isinstance(model, GPTNeoForCausalLM):
                # Ignore "local" layers in this model type
                if block.attn.attention_type != 'global':
                    continue
                attn_module = block.attn.attention
            elif isinstance(model, GPTNeoXForCausalLM):
                attn_module = block.attention
            else:
                attn_module = block.attn

            attn_modules.append(attn_module)

        return attn_modules

    # Rename methods to allow:
    #  - new `forward` to wrap original `forward`
    #  - new `generate` to wrap original `generate`
    setattr(model, '_original_forward', getattr(model, 'forward'))
    setattr(model, '_original_generate', getattr(model, 'generate'))

    def forward(
        self: CAUSAL_GPT_TYPES,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        bidirectional_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        """Wraps original forward to enable PrefixLM attention."""

        def call_og_forward():
            if isinstance(self, GPTNeoXForCausalLM):
                return self._original_forward(
                    input_ids=input_ids,
                    past_key_values=past_key_values,
                    attention_mask=attention_mask,
                    head_mask=head_mask,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                )
            else:
                return self._original_forward(
                    input_ids=input_ids,
                    past_key_values=past_key_values,
                    attention_mask=attention_mask,
                    token_type_ids=token_type_ids,
                    position_ids=position_ids,
                    head_mask=head_mask,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                )

        if bidirectional_mask is None:
            # This wrapper is a no-op if bidirectional masks are not supplied
            return call_og_forward()
        assert isinstance(bidirectional_mask, torch.Tensor)

        attn_modules = _get_attn_modules(model)

        # Handle bidirectional_mask sizing
        # Note: all attn_modules.bias have the same size
        b, s = bidirectional_mask.shape

        max_length = attn_modules[0].bias.shape[-1]  # type: ignore

        if s > max_length:
            raise ValueError(
                f'bidirectional_mask sequence length (={s}) exceeds the ' +\
                f'max length allowed by the model ({max_length}).'
            )
        assert s <= max_length
        if s < max_length:
            pad = torch.zeros((int(b), int(max_length - s)),
                              dtype=bidirectional_mask.dtype,
                              device=bidirectional_mask.device)
            bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
        bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)

        # Incorporate the bidirectional mask into the original causal mask
        for attn_module in attn_modules:
            assert isinstance(attn_module.bias, torch.Tensor)
            attn_module.bias.data = torch.logical_or(attn_module.bias.data,
                                                     bidirectional)

        # Collect outputs using the model's original forward method
        output = call_og_forward()

        # Reset the masks
        for attn_module in attn_modules:
            attn_module.bias.data = torch.tril(
                attn_module.bias.data[0, 0])[None, None]  # type: ignore

        # Return the outputs
        return output

    def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
        """Wraps original generate to enable PrefixLM attention."""
        attn_modules = _get_attn_modules(model)

        # A convenient answer to PrefixLM generation is to set the causal mask
        # to be bidirectional. All the tokens in the input prompt can attend to
        # one another and, since tokens are generated one-by-one, each new
        # token gets to see everything behind it. This depends on activations
        # being cached and not updated, which is how the HF implementation works.
        for attn_module in attn_modules:
            attn_module.bias.data[:] = 1  # type: ignore

        # Collect outputs using the model's original forward method
        output = self._original_generate(*args, **kwargs)

        # Reset the masks
        for attn_module in attn_modules:
            attn_module.bias.data = torch.tril(
                attn_module.bias.data[0, 0])[None, None]  # type: ignore

        # Return the outputs
        return output

    # Replace `forward` and `generate` with the new wrappers
    setattr(model, 'forward', MethodType(forward, model))
    setattr(model, 'generate', MethodType(generate, model))

    # Finally, tag the model so that this conversion cannot happen again.
    setattr(model, '_prefix_lm_converted', True)
    return model


def _convert_bloom_causal_lm_to_prefix_lm(
        model: BloomForCausalLM) -> BloomForCausalLM:
    """Converts a BLOOM Causal LM to a Prefix LM.

    Supported HuggingFace model classes:
        - `BloomForCausalLM`

    See `convert_hf_causal_lm_to_prefix_lm` for more details.
    """
    if hasattr(model, '_prefix_lm_converted'):
        return model

    assert isinstance(model, BloomForCausalLM)
    assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'

    # Modified from transformers.models.bloom.modeling_bloom.BloomModel._prepare_attn_mask
    # https://github.com/huggingface/transformers/blob/v4.25.1/src/transformers/models/bloom/modeling_bloom.py#L648
    def _prepare_attn_mask(
        self: BloomModel,
        attention_mask: torch.Tensor,
        bidirectional_mask: Optional[torch.Tensor],
        input_shape: Tuple[int, int],
        past_key_values_length: int,
    ) -> torch.BoolTensor:
        # create causal mask
        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        combined_attention_mask = None
        device = attention_mask.device
        _, src_length = input_shape

        if src_length > 1:
            combined_attention_mask = _make_causal_mask_bloom(
                input_shape,
                device=device,
                past_key_values_length=past_key_values_length)
            # Make use of the batch-specific `bidirectional_mask` attribute set
            # by the parent module in its (new) `forward` method wrapper
            if bidirectional_mask is not None:
                # The two masks should have the same size
                assert attention_mask.shape == bidirectional_mask.shape

                # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
                expanded_bidirectional_mask = _expand_mask_bloom(
                    bidirectional_mask, tgt_length=src_length)
                combined_attention_mask = torch.logical_and(
                    combined_attention_mask, expanded_bidirectional_mask)

        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        expanded_attn_mask = _expand_mask_bloom(attention_mask,
                                                tgt_length=src_length)
        combined_attention_mask = (expanded_attn_mask
                                   if combined_attention_mask is None else
                                   expanded_attn_mask | combined_attention_mask)

        return combined_attention_mask

    # Modified from transformers.models.bloom.modeling_bloom._prepare_alibi_transformer
    # https://github.com/huggingface/transformers/blob/v4.25.1/src/transformers/models/bloom/modeling_bloom.py#L87
    def _build_alibi_tensor(
        self: BloomModel,
        batch_size: int,
        query_length: int,
        key_length: int,
        dtype: torch.dtype,
        device: torch.device,
    ) -> torch.Tensor:
        num_heads = self.config.n_head

        closest_power_of_2 = 2**math.floor(math.log2(num_heads))
        base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
                            device=device,
                            dtype=torch.float32)
        powers = torch.arange(1,
                              1 + closest_power_of_2,
                              device=device,
                              dtype=torch.int32)
        slopes = torch.pow(base, powers)

        if closest_power_of_2 != num_heads:
            extra_base = torch.tensor(
                2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
                device=device,
                dtype=torch.float32)
            num_remaining_heads = min(closest_power_of_2,
                                      num_heads - closest_power_of_2)
            extra_powers = torch.arange(1,
                                        1 + 2 * num_remaining_heads,
                                        2,
                                        device=device,
                                        dtype=torch.int32)
            slopes = torch.cat(
                [slopes, torch.pow(extra_base, extra_powers)], dim=0)

        qa = torch.arange(query_length, device=device,
                          dtype=torch.int32).view(-1, 1)
        ka = torch.arange(key_length, device=device,
                          dtype=torch.int32).view(1, -1)
        diffs = qa - ka + key_length - query_length
        diffs = -diffs.abs()
        alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(
            1, 1, query_length, key_length)
        alibi = alibi.expand(batch_size, -1, -1,
                             -1).reshape(-1, query_length, key_length)
        return alibi.to(dtype)

    # Modified from transformers.models.bloom.modeling_bloom.BloomModel.forward
    # Note: The modified code is surrounded with #### START/END #### comments
    # and one new argument (`bidirectional_mask`) is added to the signature.
    KeyValueT = Tuple[torch.Tensor, torch.Tensor]

    def transformer_forward(
        self: BloomModel,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[KeyValueT, ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        bidirectional_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments: Any
    ) -> Union[Tuple[torch.Tensor, ...],
               BaseModelOutputWithPastAndCrossAttentions]:
        if deprecated_arguments.pop('position_ids', False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so
            # defaulting pop to `False` allows to detect if users were
            # passing explicitly `None`
            warnings.warn(
                '`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' +\
                'You can safely ignore passing `position_ids`.',
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(
                f'Got unexpected arguments: {deprecated_arguments}')

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                'You cannot specify both input_ids and inputs_embeds at the same time'
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError(
                'You have to specify either input_ids or inputs_embeds')

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))  # type: ignore

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape batch_size x num_heads x N x N
        # head_mask has shape n_layer x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        hidden_states = self.word_embeddings_layernorm(inputs_embeds)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        # Compute alibi tensor: check build_alibi_tensor documentation
        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:  # type: ignore
            tmp = past_key_values[0][0]  # type: ignore
            past_key_values_length = tmp.shape[2]  # type: ignore
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length_with_past),
                                        device=hidden_states.device)
        else:
            attention_mask = attention_mask.to(hidden_states.device)

        ##### ALL NON-SIGNATURE MODIFICATIONS ARE CONTAINED TO THIS BLOCK [STARTS HERE] #####
        alibi = self._build_alibi_tensor(
            batch_size=batch_size,
            query_length=seq_length,
            key_length=seq_length_with_past,
            dtype=hidden_states.dtype,
            device=hidden_states.device,
        )

        causal_mask = self._prepare_attn_mask(
            attention_mask,
            bidirectional_mask,
            input_shape=(batch_size, seq_length),
            past_key_values_length=past_key_values_length,
        )
        ##### ALL NON-SIGNATURE MODIFICATIONS ARE CONTAINED TO THIS BLOCK [ENDS HERE] #####

        for i, (block,
                layer_past) in enumerate(zip(self.h,
                                             past_key_values)):  # type: ignore

            if output_hidden_states:
                hst = (hidden_states,)
                all_hidden_states = all_hidden_states + hst  # type: ignore

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
                    )
                    use_cache = False

                def create_custom_forward(module: torch.nn.Module):

                    def custom_forward(*inputs: Any):
                        # None for past_key_value
                        return module(*inputs,
                                      use_cache=use_cache,
                                      output_attentions=output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(  # type: ignore
                    create_custom_forward(block),
                    hidden_states,
                    alibi,
                    causal_mask,
                    head_mask[i],  # type: ignore
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=causal_mask,
                    head_mask=head_mask[i],  # type: ignore
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    alibi=alibi,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)  # type: ignore

            if output_attentions:
                oa = (outputs[2 if use_cache else 1],)  # type: ignore
                all_self_attentions = all_self_attentions + oa  # type: ignore

        # Add last hidden state
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            hst = (hidden_states,)
            all_hidden_states = all_hidden_states + hst  # type: ignore

        if not return_dict:
            return tuple(v for v in [
                hidden_states, presents, all_hidden_states, all_self_attentions
            ] if v is not None)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    # Make it so model.transformer has the new helper methods and new
    # `forward` method
    setattr(model.transformer, '_prepare_attn_mask',
            MethodType(_prepare_attn_mask, model.transformer))
    setattr(model.transformer, '_build_alibi_tensor',
            MethodType(_build_alibi_tensor, model.transformer))
    setattr(model.transformer, 'forward',
            MethodType(transformer_forward, model.transformer))

    # In order to actually use the new argument we've added to
    # model.transformer, we need to update the parent module's `forward` to
    # accept/pass the same new argument.
    # We add 2 lines to handle that change.
    # Both lines are tagged with "# WE'RE ADDING A NEW ARGUMENT!"
    KeyValueT = Tuple[torch.Tensor, torch.Tensor]

    def forward(
        self: BloomForCausalLM,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[KeyValueT, ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        # WE'RE ADDING A NEW ARGUMENT! (Change 1/2)
        bidirectional_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments: Any,
    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
        """Replacement forward method for BloomCausalLM."""
        if deprecated_arguments.pop('position_ids', False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so
            # defaulting pop to `False` allows to detect if users were passing
            # explicitly `None`
            warnings.warn(
                '`position_ids` have no functionality in BLOOM and will be removed ' +\
                'in v5.0.0. You can safely ignore passing `position_ids`.',
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(
                f'Got unexpected arguments: {deprecated_arguments}')

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            # WE'RE ADDING A NEW ARGUMENT! (Change 2/2)
            bidirectional_mask=bidirectional_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            batch_size, seq_length, vocab_size = shift_logits.shape
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(batch_size * seq_length, vocab_size),
                shift_labels.view(batch_size * seq_length))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    # To handle generation, re-write `prepare_inputs_for_generation` to
    # implement the bidirectional logic.
    def prepare_inputs_for_generation(self: BloomForCausalLM,
                                      input_ids: torch.LongTensor,
                                      past: Optional[torch.Tensor] = None,
                                      attention_mask: Optional[
                                          torch.Tensor] = None,
                                      **kwargs: Any) -> dict:
        del kwargs  # unused
        # only last token for input_ids if past is not None
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)  # type: ignore
            # We can turn off bidirectional masking after the prefix
            # has been encoded into `past`
            bidirectional_mask = None

            # the cache may be in the standard format (e.g. in contrastive
            # search), convert to bloom's format if needed
            if past[0][0].shape[0] == input_ids.shape[0]:
                past = self._convert_to_bloom_cache(past)

        else:
            # If we're here, `input_ids` contains the prefix. Encode it with
            # bidirectional attention.
            bidirectional_mask = torch.ones_like(input_ids)

        return {
            'input_ids': input_ids,
            'past_key_values': past,
            # "use_cache": kwargs.get("use_cache"),
            # Requires this. TODO(Alex): Confirm this supports other decoding strategies.
            'use_cache': True,
            'attention_mask': attention_mask,
            'bidirectional_mask': bidirectional_mask,
        }

    # Register the new `forward` and `prepare_inputs_for_generation` methods
    # with the model
    setattr(model, 'forward', MethodType(forward, model))
    setattr(model, 'prepare_inputs_for_generation',
            MethodType(prepare_inputs_for_generation, model))

    # Finally, tag the model so that this conversion cannot happen again.
    setattr(model, '_prefix_lm_converted', True)
    return model


def _convert_opt_causal_lm_to_prefix_lm(
        model: OPTForCausalLM) -> OPTForCausalLM:
    """Converts an OPT Causal LM to a Prefix LM.

    Supported HuggingFace model classes:
        - `OPTForCausalLM`

    See `convert_hf_causal_lm_to_prefix_lm` for more details.
    """
    if hasattr(model, '_prefix_lm_converted'):
        return model

    assert isinstance(model, OPTForCausalLM)
    assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'

    # Rename methods to allow:
    #  - new `forward` to wrap original `forward`
    #  - new `generate` to wrap original `generate`
    setattr(model, '_original_forward', getattr(model, 'forward'))
    setattr(model, '_original_generate', getattr(model, 'generate'))

    model.model.decoder.bidirectional_mask = None

    # Modified from transformers.models.bloom.modeling_opt.OPTDecoder._prepare_decoder_attn_mask
    # https://github.com/huggingface/transformers/blob/v4.25.1/src/transformers/models/opt/modeling_opt.py#L532
    def _prepare_decoder_attention_mask(self: torch.nn.Module,
                                        attention_mask: Optional[torch.Tensor],
                                        input_shape: Tuple[int, int],
                                        inputs_embeds: Optional[torch.Tensor],
                                        past_key_values_length: int):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            assert inputs_embeds is not None
            # 'g' indicates generation mode. Causal mask replaced with 0.
            if self.bidirectional_mask == 'g':
                bsz, src_length = input_shape
                combined_attention_mask = torch.zeros(
                    (bsz, 1, src_length, src_length + past_key_values_length),
                    dtype=inputs_embeds.dtype,
                    device=inputs_embeds.device)
            else:
                combined_attention_mask = _make_causal_mask_opt(
                    input_shape,
                    inputs_embeds.dtype,
                    past_key_values_length=past_key_values_length).to(
                        inputs_embeds.device)

                # Make use of the batch-specific `bidirectional_mask` attribute
                # set by the parent module in its (new) `forward` method wrapper
                if self.bidirectional_mask is not None:
                    assert attention_mask is not None
                    # The two masks should have the same size
                    assert attention_mask.shape == self.bidirectional_mask.shape

                    # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
                    expanded_bidirectional_mask = _expand_mask_opt(
                        self.bidirectional_mask,
                        inputs_embeds.dtype,
                        tgt_len=input_shape[-1]).to(inputs_embeds.device)
                    combined_attention_mask = torch.maximum(
                        expanded_bidirectional_mask, combined_attention_mask)

        if attention_mask is not None:
            assert inputs_embeds is not None
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask_opt(attention_mask,
                                                  inputs_embeds.dtype,
                                                  tgt_len=input_shape[-1]).to(
                                                      inputs_embeds.device)
            combined_attention_mask = (expanded_attn_mask
                                       if combined_attention_mask is None else
                                       expanded_attn_mask +
                                       combined_attention_mask)

        return combined_attention_mask

    # Make it so model.model.decoder uses the above `_prepare_decoder_attn_mask`
    # in place of the original method
    setattr(model.model.decoder, '_prepare_decoder_attention_mask',
            MethodType(_prepare_decoder_attention_mask, model.model.decoder))

    def forward(
        self: OPTForCausalLM,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        bidirectional_mask: Optional[torch.ByteTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):

        def call_og_forward():
            return self._original_forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        if bidirectional_mask is None:
            # This wrapper is a no-op if bidirectional masks are not supplied
            return call_og_forward()

        # Temporarily set `bidirectional_mask` in the child module
        self.model.decoder.bidirectional_mask = bidirectional_mask

        # Apply the original forward method (the model will use the mask that
        # was just set)
        try:
            outputs = call_og_forward()
        except:
            self.model.decoder.bidirectional_mask = None
            raise

        # Reset the `bidirectional_mask` attribute to None
        self.model.decoder.bidirectional_mask = None

        # Return the outputs
        return outputs

    def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Any):
        """Wraps original generate to enable PrefixLM-style attention."""
        # Flag the child module to use generation-style attention masking
        self.model.decoder.bidirectional_mask = 'g'

        # Collect outputs using the model's original forward method
        try:
            output = self._original_generate(*args, **kwargs)
        except:
            self.model.decoder.bidirectional_mask = None
            raise

        # Reset the `bidirectional_mask` attribute to None
        self.model.decoder.bidirectional_mask = None

        # Return the output
        return output

    # Replace `forward` and `generate` with the new wrappers
    setattr(model, 'forward', MethodType(forward, model))
    setattr(model, 'generate', MethodType(generate, model))

    # Finally, tag the model so that this conversion cannot happen again.
    setattr(model, '_prefix_lm_converted', True)
    return model


_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM,
                                                OPTForCausalLM)

CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM,
                        GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]


def convert_hf_causal_lm_to_prefix_lm(
        model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
    """Converts a HuggingFace Causal LM to a Prefix LM.

    Supported HuggingFace model classes:
        - `GPT2LMHeadModel`
        - `GPTNeoForCausalLM`
        - `GPTNeoXForCausalLM`
        - `GPTJForCausalLM`
        - `BloomForCausalLM`
        - `OPTForCausalLM`

    Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
    `generate` method and/or select underlying methods depending on the model class.

    These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".

    Notes on training:
        To actually train the converted model as a Prefix LM, training batches will need to indicate
        the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.

        **This is not a standard input and requires custom layers either within or after your dataloader.**

        In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
        such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
        That is, the prefix portion of the sequence should not generate any loss. Loss should only be
        generated by the target portion of the sequence.

    Notes on `GPTNeoForCausalLM`:
        To simplify the implementation, "global" and "local" attention layers are handled differently.
        For "global" layers, we handle conversion as described above. For "local" layers, which use a
        causal attention mask within a restricted local window, we do not alter the masking.

    Notes on `forward` method conversion:
        After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
        which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
        belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
        0 indicates token positions belonging to the target.

        The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
        causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
        the causal masks before returning the result.

    Notes on `generate` method conversion:
        After conversion, the `generate` method will have the same signature but will internally
        convert all causal masks to be purely bidirectional, call the original `generate` method, and
        (where appropriate) reset the causal masks before returning the result.

        This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
        "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
        each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
        another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
        previously-generated tokens (also as expected in a Prefix LM).

    To preserve the API, the original methods are renamed to `_original_forward` and
    `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
    them, respectively. Although implementation details vary by model class.
    """
    if isinstance(model, _SUPPORTED_GPT_MODELS):
        return _convert_gpt_causal_lm_to_prefix_lm(model)

    elif isinstance(model, BloomForCausalLM):
        return _convert_bloom_causal_lm_to_prefix_lm(model)

    elif isinstance(model, OPTForCausalLM):
        return _convert_opt_causal_lm_to_prefix_lm(model)

    else:
        raise TypeError(
            f'Cannot convert model to Prefix LM. ' +\
            f'Model does not belong to set of supported HF models:' +\
            f'\n{_SUPPORTED_HF_MODELS}'
        )


def add_bidirectional_mask_if_missing(batch: MutableMapping):
    """Attempts to add bidirectional_mask to batch if missing.

    Raises:
        KeyError if bidirectional_mask is missing and can't be inferred
    """
    if 'bidirectional_mask' not in batch:
        if batch.get('mode', None) == 'icl_task':
            batch['bidirectional_mask'] = batch['attention_mask'].clone()
            for i, continuation_indices in enumerate(
                    batch['continuation_indices']):
                batch['bidirectional_mask'][i, continuation_indices] = 0
        elif ('labels' in batch) and ('attention_mask' in batch):
            batch['bidirectional_mask'] = torch.logical_and(
                torch.eq(batch['attention_mask'], 1),
                torch.eq(batch['labels'], -100),
            ).type_as(batch['attention_mask'])
        else:
            raise KeyError(
                'No bidirectional_mask in batch and not sure how to construct one.'
            )