File size: 15,252 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import time
import warnings
from argparse import ArgumentParser, ArgumentTypeError, Namespace
from contextlib import nullcontext
from typing import Any, Dict, List, Optional, Union
import torch
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
PreTrainedModel, PreTrainedTokenizerBase,
StoppingCriteria, StoppingCriteriaList, TextStreamer)
class ChatFormatter:
"""A class for formatting the chat history.
Args:
system: The system prompt. If None, a default ChatML-formatted prompt is used.
user: The user prompt. If None, a default ChatML value is used.
assistant: The assistant prompt. If None, a default ChatML value is used.
Attributes:
system: The system prompt.
user: The user prompt.
assistant: The assistant prompt.
response_prefix: The response prefix (anything before {} in the assistant format string)
"""
def __init__(self, system: str, user: str, assistant: str) -> None:
self.system = system if system else '<|im_start|>system\nA conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.<|im_end|>\n'
self.user = user if user else '<|im_start|>user\n{}<|im_end|>\n'
self.assistant = assistant if assistant else '<|im_start|>assistant\n{}<|im_end|>\n'
self.response_prefix = self.assistant.split('{}')[0]
class Conversation:
"""A class for interacting with a chat-tuned LLM.
Args:
model: The model to use for inference.
tokenizer: The tokenizer to use for inference.
chat_format: The chat format to use for the conversation.
generate_kwargs: The keyword arguments to pass to `model.generate`.
stop_tokens: The tokens to stop generation on.
Attributes:
model: The model to use for inference.
tokenizer: The tokenizer to use for inference.
chat_format: The chat format to use for the conversation.
streamer: The streamer to use for inference.
generate_kwargs: The keyword arguments to pass to `model.generate`.
history: The conversation history.
cli_instructions: The instructions to display to the user.
"""
def __init__(self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizerBase,
chat_format: ChatFormatter,
generate_kwargs: Dict[str, Any],
stop_tokens: Optional[List[str]] = None) -> None:
if stop_tokens is None:
stop_tokens = ['<|endoftext|>', '<|im_end|>']
self.model = model
self.tokenizer = tokenizer
self.chat_format = chat_format
stop_token_ids = self.tokenizer.convert_tokens_to_ids(stop_tokens)
if len(stop_token_ids) != len(stop_tokens):
warnings.warn(
f'Not all stop tokens were found in the tokenizer vocabulary: {stop_tokens}\n'
+ 'Generation may stop or continue unexpectedly.')
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor,
scores: torch.FloatTensor, **kwargs: Any) -> bool:
del kwargs # unused
for stop_id in stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
self.streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
self.generate_kwargs = {
**generate_kwargs,
'stopping_criteria':
StoppingCriteriaList([StopOnTokens()]),
'streamer':
self.streamer,
}
self.history = []
self.cli_instructions = (
'Enter your message below.\n- Hit return twice to send input to the model\n'
+
"- Type 'clear' to restart the conversation\n- Type 'history' to see the conversation\n"
+
"- Type 'quit' to end\n- Type 'system' to change the system prompt\n"
)
def _history_as_formatted_str(self) -> str:
text = self.chat_format.system + ''.join([
'\n'.join([
self.chat_format.user.format(item[0]),
self.chat_format.assistant.format(item[1]),
]) for item in self.history[:-1]
])
text += self.chat_format.user.format(self.history[-1][0])
text += self.chat_format.response_prefix
return text
def turn(self, user_inp: str) -> None:
self.history.append([user_inp, ''])
conversation = self._history_as_formatted_str()
input_ids = self.tokenizer(conversation, return_tensors='pt').input_ids
input_ids = input_ids.to(self.model.device)
# also stream to stdout
maybe_synchronize()
start = time.time()
print('Assistant:')
gkwargs = {**self.generate_kwargs, 'input_ids': input_ids}
# this will stream to stdout, but we need to keep track of the output_ids for saving history
output_ids = self.model.generate(**gkwargs)
maybe_synchronize()
end = time.time()
print(f'took {end - start:.2f} seconds')
new_tokens = output_ids[0, len(input_ids[0]):]
assistant_response = self.tokenizer.decode(new_tokens,
skip_special_tokens=True)
self.history[-1][-1] = assistant_response
def __call__(self) -> None:
print(self.cli_instructions)
while True:
print('User:')
user_inp_lines = []
while True:
line = input()
if line.strip() == '':
break
user_inp_lines.append(line)
user_inp = '\n'.join(user_inp_lines)
if user_inp.lower() == 'quit':
break
elif user_inp.lower() == 'clear':
self.history = []
continue
elif user_inp == 'history':
print(f'history: {self.history}')
continue
elif user_inp == 'history_fmt':
print(f'history: {self._history_as_formatted_str()}')
continue
elif user_inp == 'system':
print('Enter a new system prompt:')
new_system = input()
sys = f'<|im_start|>system\n{new_system.strip()}.<|im_end|>\n'
self.chat_format.system = sys
continue
self.turn(user_inp)
def get_dtype(dtype: str):
if dtype == 'fp32':
return torch.float32
elif dtype == 'fp16':
return torch.float16
elif dtype == 'bf16':
return torch.bfloat16
else:
raise NotImplementedError(
f'dtype {dtype} is not supported. ' +
'We only support fp32, fp16, and bf16 currently')
def str2bool(v: Union[str, bool]):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
def str_or_bool(v: Union[str, bool]):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
return v
def parse_args() -> Namespace:
"""Parse commandline arguments."""
parser = ArgumentParser(
description='Load a HF CausalLM Model and use it to generate text.')
parser.add_argument('-n', '--name_or_path', type=str, required=True)
parser.add_argument('--max_new_tokens', type=int, default=512)
parser.add_argument('--max_seq_len', type=int, default=None)
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--top_k', type=int, default=50)
parser.add_argument('--top_p', type=float, default=1.0)
parser.add_argument('--do_sample',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--use_cache',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--eos_token_id', type=str, default=None)
parser.add_argument('--pad_token_id', type=str, default=None)
parser.add_argument('--model_dtype',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default=None)
parser.add_argument('--autocast_dtype',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default=None)
parser.add_argument('--warmup',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--trust_remote_code',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--use_auth_token',
type=str_or_bool,
nargs='?',
const=True,
default=None)
parser.add_argument('--revision', type=str, default=None)
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--device_map', type=str, default=None)
parser.add_argument('--attn_impl', type=str, default=None)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--system_prompt', type=str, default=None)
parser.add_argument('--user_msg_fmt', type=str, default=None)
parser.add_argument('--assistant_msg_fmt', type=str, default=None)
parser.add_argument(
'--stop_tokens',
type=str,
default='<|endoftext|> <|im_end|>',
help='A string of tokens to stop generation on; will be split on spaces.'
)
return parser.parse_args()
def maybe_synchronize():
if torch.cuda.is_available():
torch.cuda.synchronize()
def main(args: Namespace) -> None:
# Set device or device_map
if args.device and args.device_map:
raise ValueError('You can only set one of `device` and `device_map`.')
if args.device is not None:
device = args.device
device_map = None
else:
device = None
device_map = args.device_map or 'auto'
print(f'Using {device=} and {device_map=}')
# Set model_dtype
if args.model_dtype is not None:
model_dtype = get_dtype(args.model_dtype)
else:
model_dtype = torch.float32
print(f'Using {model_dtype=}')
# Grab config first
print(f'Loading HF Config...')
from_pretrained_kwargs = {
'use_auth_token': args.use_auth_token,
'trust_remote_code': args.trust_remote_code,
'revision': args.revision,
}
try:
config = AutoConfig.from_pretrained(args.name_or_path,
**from_pretrained_kwargs)
if args.attn_impl is not None and hasattr(config, 'attn_config'):
config.attn_config['attn_impl'] = args.attn_impl
if hasattr(config, 'init_device') and device is not None:
config.init_device = device
if args.max_seq_len is not None and hasattr(config, 'max_seq_len'):
config.max_seq_len = args.max_seq_len
except Exception as e:
raise RuntimeError(
'If you are having auth problems, try logging in via `huggingface-cli login` '
+
'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... '
+
'using your access token from https://huggingface.co/settings/tokens.'
) from e
# Load HF Model
print(f'Loading HF model with dtype={model_dtype}...')
try:
model = AutoModelForCausalLM.from_pretrained(args.name_or_path,
config=config,
torch_dtype=model_dtype,
device_map=device_map,
**from_pretrained_kwargs)
model.eval()
print(f'n_params={sum(p.numel() for p in model.parameters())}')
if device is not None:
print(f'Placing model on {device=}...')
model.to(device)
except Exception as e:
raise RuntimeError(
'Unable to load HF model. ' +
'If you are having auth problems, try logging in via `huggingface-cli login` '
+
'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... '
+
'using your access token from https://huggingface.co/settings/tokens.'
) from e
print('\nLoading HF tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.name_or_path,
**from_pretrained_kwargs)
if tokenizer.pad_token_id is None:
warnings.warn(
'pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id.'
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
generate_kwargs = {
'max_new_tokens': args.max_new_tokens,
'temperature': args.temperature,
'top_p': args.top_p,
'top_k': args.top_k,
'use_cache': args.use_cache,
'do_sample': args.do_sample,
'eos_token_id': args.eos_token_id or tokenizer.eos_token_id,
'pad_token_id': args.pad_token_id or tokenizer.eos_token_id,
}
# Autocast
if args.autocast_dtype is not None:
autocast_dtype = get_dtype(args.autocast_dtype)
autocast_context = torch.autocast(model.device.type, autocast_dtype)
print(f'Using autocast with dtype={autocast_dtype}...')
else:
autocast_context = nullcontext()
print('NOT using autocast...')
chat_format = ChatFormatter(system=args.system_prompt,
user=args.user_msg_fmt,
assistant=args.assistant_msg_fmt)
conversation = Conversation(model=model,
tokenizer=tokenizer,
chat_format=chat_format,
generate_kwargs=generate_kwargs,
stop_tokens=args.stop_tokens.split())
# Warmup
if args.warmup:
print('Warming up...')
with autocast_context:
conversation.turn('Write a welcome message to the user.')
conversation.history = []
print('Starting conversation...')
with autocast_context:
conversation()
if __name__ == '__main__':
main(parse_args())
|