File size: 19,207 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run MPT model with FT.
This script is a modified version of
https://github.com/NVIDIA/FasterTransformer/blob/main/examples/pytorch/gpt/multi_gpu_gpt_example.py
"""
import argparse
import configparser
import os
import sys
import timeit
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer
dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(dir_path, '../../..'))
from examples.pytorch.gpt.utils import comm, gpt_decoder
from examples.pytorch.gpt.utils.parallel_gpt import ParallelGPT
@torch.no_grad()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--layer_num',
type=int,
default=32,
help='number of layers')
parser.add_argument('--input_len',
type=int,
default=128,
help='input sequence length to generate.')
parser.add_argument('--output_len',
type=int,
default=64,
help='output sequence length to generate.')
parser.add_argument('--head_num', type=int, default=32, help='head number')
parser.add_argument('--size_per_head',
type=int,
default=128,
help='size per head')
parser.add_argument('--vocab_size',
type=int,
default=50432,
help='vocab size')
parser.add_argument(
'--beam_width',
type=int,
default=1,
help='beam width for beam search. Using sampling when beam width is 1.')
parser.add_argument('--top_k',
type=int,
default=1,
help='top k candidate num')
parser.add_argument('--top_p',
type=float,
default=0.95,
help='top p probability threshold')
parser.add_argument('--temperature',
type=float,
default=0.8,
help='temperature')
parser.add_argument('--len_penalty',
type=float,
default=0.,
help='len_penalty')
parser.add_argument('--beam_search_diversity_rate',
type=float,
default=0.,
help='beam_search_diversity_rate')
parser.add_argument('--tensor_para_size',
type=int,
default=1,
help='tensor parallel size')
parser.add_argument('--pipeline_para_size',
type=int,
default=1,
help='pipeline parallel size')
parser.add_argument('--ckpt_path',
type=str,
default='mpt-ft-7b/1-gpu',
help='path to the FT checkpoint file.')
parser.add_argument(
'--tokenizer_name_or_path',
type=str,
default='EleutherAI/gpt-neox-20b',
help=
'Name of the tokenizer or the directory where the tokenizer file is located.'
)
parser.add_argument(
'--lib_path',
type=str,
help=
'path to the libth_transformer dynamic lib file(.e.g., build/lib/libth_transformer.so.'
)
parser.add_argument('--start_id',
type=int,
default=0,
help='start token id.')
parser.add_argument('--end_id', type=int, default=0, help='end token id.')
parser.add_argument(
'--max_batch_size',
type=int,
default=8,
help=
'Max batch size. If sample_input_file is given, it is truncated to this max_batch_size, otherwise, this value is used as batch size.'
)
parser.add_argument('--repetition_penalty',
type=float,
default=5.,
help='repetition penalty')
parser.add_argument(
'--presence_penalty',
type=float,
default=0.,
help=
'presence penalty. Similar to repetition, but additive rather than multiplicative.'
)
parser.add_argument('--min_length',
type=int,
default=0,
help='A minimum number of tokens to generate')
parser.add_argument(
'--max_seq_len',
type=int,
default=2048,
help='max sequence length for position embedding table.')
parser.add_argument('--inference_data_type',
'--data_type',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default='bf16')
parser.add_argument('--time',
action='store_true',
help='whether or not to measure time elapsed.')
parser.add_argument(
'--sample_input_file',
type=str,
default=None,
help=
'path to sample input file. If not set, it runs with no context inputs.'
)
parser.add_argument('--sample_output_file',
type=str,
default=None,
help='path to sample output file.')
parser.add_argument(
'--disable_random_seed',
dest='random_seed',
action='store_false',
help='Disable the use of random seed for sentences in a batch.')
parser.add_argument('--skip_end_tokens',
dest='skip_end_tokens',
action='store_false',
help='Whether to remove or not end tokens in outputs.')
parser.add_argument('--no_detokenize',
dest='detokenize',
action='store_false',
help='Skip detokenizing output token ids.')
parser.add_argument(
'--int8_mode',
type=int,
default=0,
choices=[0, 1],
help='The level of quantization to perform.' +
' 0: No quantization. All computation in data_type' +
' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported when data_type is fp32'
)
parser.add_argument(
'--weights_data_type',
type=str,
default='fp32',
choices=['fp32', 'fp16'],
help='Data type of FT checkpoint weights',
)
parser.add_argument(
'--return_cum_log_probs',
type=int,
default=0,
choices=[0, 1, 2],
help='Whether to compute the cumulative log probsbility of sentences.' +
' 0: do not return the cumulative log probs' +
' 1: return the cumulative log probs of generated sequences' +
' 2: return the cumulative log probs of sequences')
parser.add_argument('--shared_contexts_ratio',
type=float,
default=0.0,
help='Triggers the shared context optimization when ' +
'compact_size <= shared_contexts_ratio * batch_size ' +
'A value of 0.0 deactivate the optimization')
parser.add_argument(
'--use_gpt_decoder_ops',
action='store_true',
help='Use separate decoder FT operators instead of end-to-end model op.'
)
parser.add_argument(
'--no-alibi',
dest='alibi',
action='store_false',
help='Do not use ALiBi (aka use_attention_linear_bias).')
parser.add_argument(
'--layernorm_eps',
type=float,
default=1e-5,
help='layernorm eps in PyTorch, by default, is 1e-5 and 1e-6 in FT.')
args = parser.parse_args()
ckpt_config = configparser.ConfigParser()
ckpt_config_path = os.path.join(args.ckpt_path, 'config.ini')
if os.path.isfile(ckpt_config_path):
ckpt_config.read(ckpt_config_path)
if 'gpt' in ckpt_config.keys():
for args_key, config_key, func in [
('layer_num', 'num_layer', ckpt_config.getint),
('max_seq_len', 'max_pos_seq_len', ckpt_config.getint),
('weights_data_type', 'weight_data_type', ckpt_config.get),
('layernorm_eps', 'layernorm_eps', ckpt_config.getfloat),
('alibi', 'use_attention_linear_bias', ckpt_config.getboolean),
]:
if config_key in ckpt_config['gpt'].keys():
prev_val = args.__dict__[args_key]
args.__dict__[args_key] = func('gpt', config_key)
print(
'Loading {} from config.ini, previous: {}, current: {}'
.format(args_key, prev_val, args.__dict__[args_key]))
else:
print('Not loading {} from config.ini'.format(args_key))
for key in ['head_num', 'size_per_head', 'tensor_para_size']:
if key in args.__dict__:
prev_val = args.__dict__[key]
args.__dict__[key] = ckpt_config.getint('gpt', key)
print(
'Loading {} from config.ini, previous: {}, current: {}'
.format(key, prev_val, args.__dict__[key]))
else:
print('Not loading {} from config.ini'.format(key))
layer_num = args.layer_num
output_len = args.output_len
head_num = args.head_num
size_per_head = args.size_per_head
vocab_size = args.vocab_size
beam_width = args.beam_width
top_k = args.top_k
top_p = args.top_p
temperature = args.temperature
len_penalty = args.len_penalty
beam_search_diversity_rate = args.beam_search_diversity_rate
tensor_para_size = args.tensor_para_size
pipeline_para_size = args.pipeline_para_size
start_id = args.start_id
end_id = args.end_id
max_batch_size = args.max_batch_size
max_seq_len = args.max_seq_len
repetition_penalty = args.repetition_penalty
presence_penalty = args.presence_penalty
min_length = args.min_length
weights_data_type = args.weights_data_type
return_cum_log_probs = args.return_cum_log_probs
return_output_length = return_cum_log_probs > 0
shared_contexts_ratio = args.shared_contexts_ratio
layernorm_eps = args.layernorm_eps
use_attention_linear_bias = args.alibi
has_positional_encoding = not args.alibi
print('\n=================== Arguments ===================')
for k, v in vars(args).items():
print(f'{k.ljust(30, ".")}: {v}')
print('=================================================\n')
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path)
torch.manual_seed(0)
comm.initialize_model_parallel(args.tensor_para_size,
args.pipeline_para_size)
rank = comm.get_rank()
device = comm.get_device()
# Inputs
contexts = []
if args.sample_input_file:
with open(args.sample_input_file, 'r') as f:
contexts = f.read().splitlines()
batch_size = min(len(contexts), max_batch_size)
contexts = contexts[:batch_size]
start_ids = [
torch.tensor(tokenizer.encode(c), dtype=torch.int32, device=device)
for c in contexts
]
else:
batch_size = max_batch_size
contexts = ['<|endoftext|>'] * batch_size
start_ids = [torch.IntTensor([end_id for _ in range(args.input_len)])
] * batch_size
start_lengths = [len(ids) for ids in start_ids]
start_ids = pad_sequence(start_ids, batch_first=True, padding_value=end_id)
start_lengths = torch.IntTensor(start_lengths)
# Prepare model.
if not args.use_gpt_decoder_ops:
gpt = ParallelGPT(head_num,
size_per_head,
vocab_size,
start_id,
end_id,
layer_num,
max_seq_len,
tensor_para_size,
pipeline_para_size,
lib_path=args.lib_path,
inference_data_type=args.inference_data_type,
int8_mode=args.int8_mode,
weights_data_type=weights_data_type,
layernorm_eps=layernorm_eps,
use_attention_linear_bias=use_attention_linear_bias,
has_positional_encoding=has_positional_encoding,
shared_contexts_ratio=shared_contexts_ratio)
if not gpt.load(ckpt_path=args.ckpt_path):
print(
'[WARNING] Checkpoint file not found. Model loading is skipped.'
)
else:
gpt = gpt_decoder.Gpt(num_heads=head_num,
size_per_head=size_per_head,
num_layers=layer_num,
vocab_size=vocab_size,
start_id=start_id,
end_id=end_id,
tensor_para_size=tensor_para_size,
pipeline_para_size=pipeline_para_size,
lib_path=args.lib_path,
max_seq_len=max_seq_len,
int8_mode=args.int8_mode,
weights_data_type=args.weights_data_type)
gpt.load(args.ckpt_path, args.inference_data_type)
if args.random_seed:
random_seed_tensor = torch.randint(0,
10000,
size=[batch_size],
dtype=torch.int64)
else:
random_seed_tensor = torch.zeros([batch_size], dtype=torch.int64)
repetition_penalty_vec = None if repetition_penalty == 1. else repetition_penalty * torch.ones(
batch_size, dtype=torch.float32)
presence_penalty_vec = None if presence_penalty == 0. else presence_penalty * torch.ones(
batch_size, dtype=torch.float32)
infer_decode_args = {
'beam_width':
beam_width,
'top_k':
top_k * torch.ones(batch_size, dtype=torch.int32),
'top_p':
top_p * torch.ones(batch_size, dtype=torch.float32),
'temperature':
temperature * torch.ones(batch_size, dtype=torch.float32),
'repetition_penalty':
repetition_penalty_vec,
'presence_penalty':
presence_penalty_vec,
'beam_search_diversity_rate':
beam_search_diversity_rate *
torch.ones(batch_size, dtype=torch.float32),
'len_penalty':
len_penalty * torch.ones(size=[batch_size], dtype=torch.float32),
'bad_words_list':
None,
'min_length':
min_length * torch.ones(size=[batch_size], dtype=torch.int32),
'random_seed':
random_seed_tensor
}
if not args.use_gpt_decoder_ops:
def gpt_generate_fn():
tokens_batch = gpt(start_ids,
start_lengths,
output_len,
return_output_length=return_output_length,
return_cum_log_probs=return_cum_log_probs,
**infer_decode_args)
return tokens_batch
else:
def gpt_generate_fn():
output_dict = gpt.generate(
input_token_ids=start_ids,
input_lengths=start_lengths,
gen_length=output_len,
eos_token_id=end_id,
return_output_length=return_output_length,
return_log_probs=return_cum_log_probs,
**infer_decode_args)
return output_dict
# Generate tokens.
gen_outputs = gpt_generate_fn()
if rank == 0:
if not args.use_gpt_decoder_ops:
if return_cum_log_probs > 0:
tokens_batch, _, cum_log_probs = gen_outputs
else:
tokens_batch, cum_log_probs = gen_outputs, None
else:
tokens_batch = gen_outputs['output_token_ids']
cum_log_probs = gen_outputs[
'cum_log_probs'] if return_cum_log_probs > 0 else None
if cum_log_probs is not None:
print('[INFO] Log probs of sentences:', cum_log_probs)
outputs = []
tokens_batch = tokens_batch.cpu().numpy()
for i, (context, tokens) in enumerate(zip(contexts, tokens_batch)):
for beam_id in range(beam_width):
token = tokens[beam_id][
start_lengths[i]:] # exclude context input from the output
if args.skip_end_tokens:
token = token[token != end_id]
output = tokenizer.decode(
token) if args.detokenize else ' '.join(
str(t) for t in token.tolist())
outputs.append(output)
print(
f'[INFO] batch {i}, beam {beam_id}:\n[Context]\n{context}\n\n[Output]\n{output}\n'
)
if args.sample_output_file:
with open(args.sample_output_file, 'w+') as f:
outputs = [o.replace('\n', '\\n') for o in outputs]
f.writelines('\n'.join(outputs))
# Measure inference time.
if args.time:
warmup_iterations = 10
for _ in range(warmup_iterations):
gpt_generate_fn()
torch.cuda.synchronize()
measurement_iterations = 10
time = timeit.default_timer()
for _ in range(measurement_iterations):
gpt_generate_fn()
torch.cuda.synchronize()
time_elapsed = timeit.default_timer() - time
if rank == 0:
print(f'[INFO] MPT time costs:')
print(
'model_name, gpu_type, gpu_count, batch_size, input_tokens, output_tokens, latency_ms'
)
print(
f'{ckpt_config.get("gpt", "model_name")}, {torch.cuda.get_device_name().replace(" ", "-")}, {torch.cuda.device_count()}, {batch_size}, {args.input_len}, {args.output_len}, {time_elapsed * 1000 / measurement_iterations:.2f}'
)
if __name__ == '__main__':
main()
|