File size: 19,207 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

# Copyright (c) 2021-2023, NVIDIA CORPORATION.  All rights reserved.
# Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Run MPT model with FT.

This script is a modified version of
https://github.com/NVIDIA/FasterTransformer/blob/main/examples/pytorch/gpt/multi_gpu_gpt_example.py
"""

import argparse
import configparser
import os
import sys
import timeit

import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer

dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(dir_path, '../../..'))
from examples.pytorch.gpt.utils import comm, gpt_decoder
from examples.pytorch.gpt.utils.parallel_gpt import ParallelGPT


@torch.no_grad()
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--layer_num',
                        type=int,
                        default=32,
                        help='number of layers')
    parser.add_argument('--input_len',
                        type=int,
                        default=128,
                        help='input sequence length to generate.')
    parser.add_argument('--output_len',
                        type=int,
                        default=64,
                        help='output sequence length to generate.')
    parser.add_argument('--head_num', type=int, default=32, help='head number')
    parser.add_argument('--size_per_head',
                        type=int,
                        default=128,
                        help='size per head')
    parser.add_argument('--vocab_size',
                        type=int,
                        default=50432,
                        help='vocab size')
    parser.add_argument(
        '--beam_width',
        type=int,
        default=1,
        help='beam width for beam search. Using sampling when beam width is 1.')
    parser.add_argument('--top_k',
                        type=int,
                        default=1,
                        help='top k candidate num')
    parser.add_argument('--top_p',
                        type=float,
                        default=0.95,
                        help='top p probability threshold')
    parser.add_argument('--temperature',
                        type=float,
                        default=0.8,
                        help='temperature')
    parser.add_argument('--len_penalty',
                        type=float,
                        default=0.,
                        help='len_penalty')
    parser.add_argument('--beam_search_diversity_rate',
                        type=float,
                        default=0.,
                        help='beam_search_diversity_rate')
    parser.add_argument('--tensor_para_size',
                        type=int,
                        default=1,
                        help='tensor parallel size')
    parser.add_argument('--pipeline_para_size',
                        type=int,
                        default=1,
                        help='pipeline parallel size')
    parser.add_argument('--ckpt_path',
                        type=str,
                        default='mpt-ft-7b/1-gpu',
                        help='path to the FT checkpoint file.')
    parser.add_argument(
        '--tokenizer_name_or_path',
        type=str,
        default='EleutherAI/gpt-neox-20b',
        help=
        'Name of the tokenizer or the directory where the tokenizer file is located.'
    )
    parser.add_argument(
        '--lib_path',
        type=str,
        help=
        'path to the libth_transformer dynamic lib file(.e.g., build/lib/libth_transformer.so.'
    )
    parser.add_argument('--start_id',
                        type=int,
                        default=0,
                        help='start token id.')
    parser.add_argument('--end_id', type=int, default=0, help='end token id.')
    parser.add_argument(
        '--max_batch_size',
        type=int,
        default=8,
        help=
        'Max batch size. If sample_input_file is given, it is truncated to this max_batch_size, otherwise, this value is used as batch size.'
    )
    parser.add_argument('--repetition_penalty',
                        type=float,
                        default=5.,
                        help='repetition penalty')
    parser.add_argument(
        '--presence_penalty',
        type=float,
        default=0.,
        help=
        'presence penalty. Similar to repetition, but additive rather than multiplicative.'
    )
    parser.add_argument('--min_length',
                        type=int,
                        default=0,
                        help='A minimum number of tokens to generate')
    parser.add_argument(
        '--max_seq_len',
        type=int,
        default=2048,
        help='max sequence length for position embedding table.')
    parser.add_argument('--inference_data_type',
                        '--data_type',
                        type=str,
                        choices=['fp32', 'fp16', 'bf16'],
                        default='bf16')
    parser.add_argument('--time',
                        action='store_true',
                        help='whether or not to measure time elapsed.')
    parser.add_argument(
        '--sample_input_file',
        type=str,
        default=None,
        help=
        'path to sample input file. If not set, it runs with no context inputs.'
    )
    parser.add_argument('--sample_output_file',
                        type=str,
                        default=None,
                        help='path to sample output file.')
    parser.add_argument(
        '--disable_random_seed',
        dest='random_seed',
        action='store_false',
        help='Disable the use of random seed for sentences in a batch.')
    parser.add_argument('--skip_end_tokens',
                        dest='skip_end_tokens',
                        action='store_false',
                        help='Whether to remove or not end tokens in outputs.')
    parser.add_argument('--no_detokenize',
                        dest='detokenize',
                        action='store_false',
                        help='Skip detokenizing output token ids.')
    parser.add_argument(
        '--int8_mode',
        type=int,
        default=0,
        choices=[0, 1],
        help='The level of quantization to perform.' +
        ' 0: No quantization. All computation in data_type' +
        ' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported when data_type is fp32'
    )
    parser.add_argument(
        '--weights_data_type',
        type=str,
        default='fp32',
        choices=['fp32', 'fp16'],
        help='Data type of FT checkpoint weights',
    )
    parser.add_argument(
        '--return_cum_log_probs',
        type=int,
        default=0,
        choices=[0, 1, 2],
        help='Whether to compute the cumulative log probsbility of sentences.' +
        ' 0: do not return the cumulative log probs' +
        ' 1: return the cumulative log probs of generated sequences' +
        ' 2: return the cumulative log probs of sequences')
    parser.add_argument('--shared_contexts_ratio',
                        type=float,
                        default=0.0,
                        help='Triggers the shared context optimization when ' +
                        'compact_size <= shared_contexts_ratio * batch_size ' +
                        'A value of 0.0 deactivate the optimization')
    parser.add_argument(
        '--use_gpt_decoder_ops',
        action='store_true',
        help='Use separate decoder FT operators instead of end-to-end model op.'
    )
    parser.add_argument(
        '--no-alibi',
        dest='alibi',
        action='store_false',
        help='Do not use ALiBi (aka use_attention_linear_bias).')
    parser.add_argument(
        '--layernorm_eps',
        type=float,
        default=1e-5,
        help='layernorm eps in PyTorch, by default, is 1e-5 and 1e-6 in FT.')
    args = parser.parse_args()

    ckpt_config = configparser.ConfigParser()
    ckpt_config_path = os.path.join(args.ckpt_path, 'config.ini')
    if os.path.isfile(ckpt_config_path):
        ckpt_config.read(ckpt_config_path)
    if 'gpt' in ckpt_config.keys():
        for args_key, config_key, func in [
            ('layer_num', 'num_layer', ckpt_config.getint),
            ('max_seq_len', 'max_pos_seq_len', ckpt_config.getint),
            ('weights_data_type', 'weight_data_type', ckpt_config.get),
            ('layernorm_eps', 'layernorm_eps', ckpt_config.getfloat),
            ('alibi', 'use_attention_linear_bias', ckpt_config.getboolean),
        ]:
            if config_key in ckpt_config['gpt'].keys():
                prev_val = args.__dict__[args_key]
                args.__dict__[args_key] = func('gpt', config_key)
                print(
                    'Loading {} from config.ini,    previous: {},    current: {}'
                    .format(args_key, prev_val, args.__dict__[args_key]))
            else:
                print('Not loading {} from config.ini'.format(args_key))
        for key in ['head_num', 'size_per_head', 'tensor_para_size']:
            if key in args.__dict__:
                prev_val = args.__dict__[key]
                args.__dict__[key] = ckpt_config.getint('gpt', key)
                print(
                    'Loading {} from config.ini,    previous: {},    current: {}'
                    .format(key, prev_val, args.__dict__[key]))
            else:
                print('Not loading {} from config.ini'.format(key))

    layer_num = args.layer_num
    output_len = args.output_len
    head_num = args.head_num
    size_per_head = args.size_per_head
    vocab_size = args.vocab_size
    beam_width = args.beam_width
    top_k = args.top_k
    top_p = args.top_p
    temperature = args.temperature
    len_penalty = args.len_penalty
    beam_search_diversity_rate = args.beam_search_diversity_rate
    tensor_para_size = args.tensor_para_size
    pipeline_para_size = args.pipeline_para_size
    start_id = args.start_id
    end_id = args.end_id
    max_batch_size = args.max_batch_size
    max_seq_len = args.max_seq_len
    repetition_penalty = args.repetition_penalty
    presence_penalty = args.presence_penalty
    min_length = args.min_length
    weights_data_type = args.weights_data_type
    return_cum_log_probs = args.return_cum_log_probs
    return_output_length = return_cum_log_probs > 0
    shared_contexts_ratio = args.shared_contexts_ratio
    layernorm_eps = args.layernorm_eps
    use_attention_linear_bias = args.alibi
    has_positional_encoding = not args.alibi

    print('\n=================== Arguments ===================')
    for k, v in vars(args).items():
        print(f'{k.ljust(30, ".")}: {v}')
    print('=================================================\n')

    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path)
    torch.manual_seed(0)

    comm.initialize_model_parallel(args.tensor_para_size,
                                   args.pipeline_para_size)
    rank = comm.get_rank()
    device = comm.get_device()

    # Inputs
    contexts = []
    if args.sample_input_file:
        with open(args.sample_input_file, 'r') as f:
            contexts = f.read().splitlines()
            batch_size = min(len(contexts), max_batch_size)
        contexts = contexts[:batch_size]
        start_ids = [
            torch.tensor(tokenizer.encode(c), dtype=torch.int32, device=device)
            for c in contexts
        ]
    else:
        batch_size = max_batch_size
        contexts = ['<|endoftext|>'] * batch_size
        start_ids = [torch.IntTensor([end_id for _ in range(args.input_len)])
                    ] * batch_size

    start_lengths = [len(ids) for ids in start_ids]

    start_ids = pad_sequence(start_ids, batch_first=True, padding_value=end_id)
    start_lengths = torch.IntTensor(start_lengths)

    # Prepare model.
    if not args.use_gpt_decoder_ops:
        gpt = ParallelGPT(head_num,
                          size_per_head,
                          vocab_size,
                          start_id,
                          end_id,
                          layer_num,
                          max_seq_len,
                          tensor_para_size,
                          pipeline_para_size,
                          lib_path=args.lib_path,
                          inference_data_type=args.inference_data_type,
                          int8_mode=args.int8_mode,
                          weights_data_type=weights_data_type,
                          layernorm_eps=layernorm_eps,
                          use_attention_linear_bias=use_attention_linear_bias,
                          has_positional_encoding=has_positional_encoding,
                          shared_contexts_ratio=shared_contexts_ratio)
        if not gpt.load(ckpt_path=args.ckpt_path):
            print(
                '[WARNING] Checkpoint file not found. Model loading is skipped.'
            )
    else:
        gpt = gpt_decoder.Gpt(num_heads=head_num,
                              size_per_head=size_per_head,
                              num_layers=layer_num,
                              vocab_size=vocab_size,
                              start_id=start_id,
                              end_id=end_id,
                              tensor_para_size=tensor_para_size,
                              pipeline_para_size=pipeline_para_size,
                              lib_path=args.lib_path,
                              max_seq_len=max_seq_len,
                              int8_mode=args.int8_mode,
                              weights_data_type=args.weights_data_type)
        gpt.load(args.ckpt_path, args.inference_data_type)

    if args.random_seed:
        random_seed_tensor = torch.randint(0,
                                           10000,
                                           size=[batch_size],
                                           dtype=torch.int64)
    else:
        random_seed_tensor = torch.zeros([batch_size], dtype=torch.int64)

    repetition_penalty_vec = None if repetition_penalty == 1. else repetition_penalty * torch.ones(
        batch_size, dtype=torch.float32)
    presence_penalty_vec = None if presence_penalty == 0. else presence_penalty * torch.ones(
        batch_size, dtype=torch.float32)

    infer_decode_args = {
        'beam_width':
            beam_width,
        'top_k':
            top_k * torch.ones(batch_size, dtype=torch.int32),
        'top_p':
            top_p * torch.ones(batch_size, dtype=torch.float32),
        'temperature':
            temperature * torch.ones(batch_size, dtype=torch.float32),
        'repetition_penalty':
            repetition_penalty_vec,
        'presence_penalty':
            presence_penalty_vec,
        'beam_search_diversity_rate':
            beam_search_diversity_rate *
            torch.ones(batch_size, dtype=torch.float32),
        'len_penalty':
            len_penalty * torch.ones(size=[batch_size], dtype=torch.float32),
        'bad_words_list':
            None,
        'min_length':
            min_length * torch.ones(size=[batch_size], dtype=torch.int32),
        'random_seed':
            random_seed_tensor
    }

    if not args.use_gpt_decoder_ops:

        def gpt_generate_fn():
            tokens_batch = gpt(start_ids,
                               start_lengths,
                               output_len,
                               return_output_length=return_output_length,
                               return_cum_log_probs=return_cum_log_probs,
                               **infer_decode_args)
            return tokens_batch
    else:

        def gpt_generate_fn():
            output_dict = gpt.generate(
                input_token_ids=start_ids,
                input_lengths=start_lengths,
                gen_length=output_len,
                eos_token_id=end_id,
                return_output_length=return_output_length,
                return_log_probs=return_cum_log_probs,
                **infer_decode_args)
            return output_dict

    # Generate tokens.
    gen_outputs = gpt_generate_fn()

    if rank == 0:
        if not args.use_gpt_decoder_ops:
            if return_cum_log_probs > 0:
                tokens_batch, _, cum_log_probs = gen_outputs
            else:
                tokens_batch, cum_log_probs = gen_outputs, None
        else:
            tokens_batch = gen_outputs['output_token_ids']
            cum_log_probs = gen_outputs[
                'cum_log_probs'] if return_cum_log_probs > 0 else None
        if cum_log_probs is not None:
            print('[INFO] Log probs of sentences:', cum_log_probs)

        outputs = []
        tokens_batch = tokens_batch.cpu().numpy()
        for i, (context, tokens) in enumerate(zip(contexts, tokens_batch)):
            for beam_id in range(beam_width):
                token = tokens[beam_id][
                    start_lengths[i]:]  # exclude context input from the output
                if args.skip_end_tokens:
                    token = token[token != end_id]
                output = tokenizer.decode(
                    token) if args.detokenize else ' '.join(
                        str(t) for t in token.tolist())
                outputs.append(output)
                print(
                    f'[INFO] batch {i}, beam {beam_id}:\n[Context]\n{context}\n\n[Output]\n{output}\n'
                )

        if args.sample_output_file:
            with open(args.sample_output_file, 'w+') as f:
                outputs = [o.replace('\n', '\\n') for o in outputs]
                f.writelines('\n'.join(outputs))

    # Measure inference time.
    if args.time:
        warmup_iterations = 10
        for _ in range(warmup_iterations):
            gpt_generate_fn()
        torch.cuda.synchronize()
        measurement_iterations = 10
        time = timeit.default_timer()
        for _ in range(measurement_iterations):
            gpt_generate_fn()
        torch.cuda.synchronize()
        time_elapsed = timeit.default_timer() - time
        if rank == 0:
            print(f'[INFO] MPT time costs:')
            print(
                'model_name, gpu_type, gpu_count, batch_size, input_tokens, output_tokens, latency_ms'
            )
            print(
                f'{ckpt_config.get("gpt", "model_name")}, {torch.cuda.get_device_name().replace(" ", "-")}, {torch.cuda.device_count()}, {batch_size}, {args.input_len}, {args.output_len}, {time_elapsed * 1000 / measurement_iterations:.2f}'
            )


if __name__ == '__main__':
    main()