File size: 42,917 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

"""Streaming dataloader for (mixture of) denoising task(s)."""

import logging
import random
import sys
from typing import Any, Callable, Dict, List, Mapping, Optional, Sequence, Union

import numpy as np
import torch
from omegaconf import DictConfig
from omegaconf import OmegaConf as om
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase

from llmfoundry.data.packing import BinPackWrapper
from llmfoundry.data.text_data import StreamingTextDataset
from llmfoundry.models import utils

__all__ = ['MixtureOfDenoisersCollator', 'build_text_denoising_dataloader']

log = logging.getLogger(__name__)

# HuggingFace hardcodes the ignore index to -100
_HF_IGNORE_INDEX = -100

# Required signature of any `prefix_function` (see below)
PREFIX_FUNCTION = Callable[[float, Optional[float], PreTrainedTokenizerBase],
                           Sequence[int]]


def ul2_prefix_function(
    mask_ratio: float,
    mean_length: Optional[float],
    tokenizer: PreTrainedTokenizerBase,
) -> Sequence[int]:
    """Generates prefixes based on UL2 paper.

    See: http://arxiv.org/abs/2205.05131
    """
    if mean_length is None:
        # This is the case for "sequence to sequence"
        prefix = '[S2S]' if mask_ratio < 1.0 else '[CLM]'
    elif mean_length >= 12 or mask_ratio >= 0.3:
        # UL2 tags this corruption rate "extreme"
        prefix = '[NLG]'
    else:
        # UL2 tags this corruption rate as "regular"
        prefix = '[NLU]'
    return tokenizer(prefix, add_special_tokens=False).input_ids


class MixtureOfDenoisersCollator:
    """Data collator for mixture of span-corruption denoisers, as in UL2.

    This collator supports a variety of tasks used to pre-train an
    encoder-decoder model or a (prefix LM) decoder-only model. This is meant
    to be used with a dataset that yields tokenized text sequences. It is not
    required that the token sequences are already padded or truncate, as this
    collator will internally truncate and pad as needed.

    For the denoising mixture recommended in the original UL2 paper,
    http://arxiv.org/abs/2205.05131, use:
    .. python:
        MixtureOfDenoisersCollator(
            ...,
            span_mean_lengths_and_ratios=[
                [3, .15],
                [8, .15],
                [3, .50],
                [8, .50],
                [64, .15],
                [64, .50],
            ],
            sequence_mask_ratios=0.25
        )

    Args:
        tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to
            prepare the data from raw text. Any missing sentinel tokens will
            be added by the collator.
        max_seq_length (int): The maximum length of sequences produced by this
            collator. Incoming sequences may be truncated to accommodate this
            limit.
            Note that when formatting for decoder-only models, the context
            tokens and target tokens are concatenated, and max_seq_length
            applies to their combined length. For encoder-decoder models, both
            the encoder and decoder will see up to max_seq_length tokens.
        decoder_only_format (bool, optional): Whether to format the batches
            for a decoder-only model (i.e. a prefix LM) or, if ``False``, an
            encoder-decoder model. Default: ``False``.
        span_mean_lengths_and_rations (optional): A length-2 list of a
            ``[mean_length, mask_ratio]`` pair, or a list of such pairs. Each
            pair adds a span corruption denoising task to the task mixture. For
            example, ``[3, 0.15]`` adds the original span corruption task used
            for pre-training a T5 model as in http://arxiv.org/abs/1910.10683,
            which trained with a single span corruption task that used a mean
            span length of 3 and a mask ratio of 15%.
            Default: ``None`` does not add any span corruption tasks.
        sequence_mask_ratios (optional): A float or list of floats, one for each
            sequence corruption denoising task to add to the task mixture. Each
            sequence mask ratio must be greater than 0.0 and at most 1.0.
            This type of task is a special instance of span corruption, with
            exactly one masked span take from the end of the sequence. The
            length of the span is sampled uniformly such that the average
            portion of masked tokens equals sequence_mask_ratio.
            Note: A value of 1.0 essentially yields causal LM examples.
            Default: ``None` does not add any sequence corruption tasks.
        allow_pad_trimming (bool, optional): Whether to allow the collator to
            trim away sequence regions that are entirely padding (i.e. padding
            for each example in the batch). If ``True``, shorter sequences may
            improve throughput but at a potentially higher memory cost
            owing to variable sequence lengths from batch to batch.
            Default: ``False`` yields batches that are always padded to
            max_seq_length.
        prefix_function (callable, optional): A function that maps denoising
            task parameters (e.g. mean_length=3, mask_ratio=0.15) to a prefix
            that will be added to sequences when the associated "noiser" is
            applied.
            To disable these prefixes, use a value of ``None``.
            Default: :func:`ul2_prefix_function` applies the prefix scheme
            suggested in the UL2 paper: http://arxiv.org/abs/2205.05131.
        context_eos (bool, optional): Whether to attach an EOS token to the end
            of the context sequence, marking the transition from context to
            target sequence. Only applicable if decoder_only_format is True.
            Context EOS tokens are always added for encoder-decoder format.
            Default: ``False`` does not attach context EOS.
    """

    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        max_seq_length: int,
        decoder_only_format: bool = False,
        span_mean_lengths_and_ratios: Optional[List] = None,
        sequence_mask_ratios: Optional[Union[List[float], float]] = None,
        allow_pad_trimming: bool = False,
        prefix_function: Optional[PREFIX_FUNCTION] = ul2_prefix_function,
        context_eos: Optional[bool] = None,
    ):
        # Prepare the tokenizer for denoising tasks
        utils.adapt_tokenizer_for_denoising(tokenizer)

        self.tokenizer = tokenizer
        self.max_seq_length = max_seq_length
        self.decoder_only_format = decoder_only_format
        self._sentinel_token_ids = np.array(self.tokenizer.sentinel_token_ids)

        # Trimming will always be skipped on at least the first __call__
        self._allow_pad_trimming = allow_pad_trimming
        self._seen_first_batch = False

        self.context_eos = bool(context_eos) if decoder_only_format else True

        # Process the span_mean_lengths_and_ratios argument
        if span_mean_lengths_and_ratios is None:
            # In this case, there are no span corruption tasks
            self.span_mean_lengths_and_ratios = []
        elif isinstance(span_mean_lengths_and_ratios[0], (int, float)):
            # In this case, there is one span corruption task
            if not len(span_mean_lengths_and_ratios) == 2:
                raise ValueError('`span_mean_lengths_and_ratios` must be a ' + \
                                 'pair of [mean_length, mask_ratio], a list ' + \
                                 f'of such pairs, or None. Got {span_mean_lengths_and_ratios}.')
            self.span_mean_lengths_and_ratios = [span_mean_lengths_and_ratios]
        else:
            # In this case, there are one or more span corruption tasks
            span_mean_lengths_and_ratios = list(span_mean_lengths_and_ratios)
            for spec_pair in span_mean_lengths_and_ratios:
                if len(spec_pair) != 2:
                    raise ValueError('`span_mean_lengths_and_ratios` must be a ' + \
                                     'pair of [mean_length, mask_ratio], a list ' + \
                                     f'of such pairs, or None. Got {span_mean_lengths_and_ratios}.')
            self.span_mean_lengths_and_ratios = span_mean_lengths_and_ratios

        # Process the sequence_mask_ratios argument
        if sequence_mask_ratios is None:
            # In this case, there are no sequence corruption tasks
            self.sequence_mask_ratios = []
        elif isinstance(sequence_mask_ratios, float):
            # In this case, there is one sequence corruption task
            self.sequence_mask_ratios = [sequence_mask_ratios]
        else:
            # In this case, there is one or more sequence corruption tasks
            for ratio in sequence_mask_ratios:
                if not (0 < ratio <= 1.0):
                    raise ValueError('`sequence_mask_ratios` must be a float (or list '+\
                                    'of floats) that are each >0.0 and <=1.0, or None. '+\
                                    f'Got {sequence_mask_ratios}.')
            self.sequence_mask_ratios = sequence_mask_ratios

        # Populate the noisers so we can learn to denoise them!
        self._noisers = []
        self._smallest_max_raw_length = self.max_seq_length * 100
        self._largest_max_raw_length = 0
        self._uses_span_corruption = False

        # Add "noisers" for any span corruption denoising tasks
        # Each mean_length / mask_ratio combo becomes one of the span
        # corruption denoising tasks
        for span_mean_length, span_mask_ratio in self.span_mean_lengths_and_ratios:
            self._uses_span_corruption = True
            if span_mean_length < 0:
                raise ValueError('All span mean lengths must be positive.')
            if not 0 < span_mask_ratio < 1.0:
                raise ValueError(
                    'All span masking ratios must be between 0.0 and 1.0.')

            if prefix_function is not None:
                prefix_tokens = prefix_function(span_mask_ratio,
                                                span_mean_length,
                                                self.tokenizer)
            else:
                prefix_tokens = None

            max_raw_length = _get_max_starting_length(
                max_length=self.max_seq_length,
                mask_ratio=span_mask_ratio,
                mean_span_length=span_mean_length,
                n_prefix_tokens=len(prefix_tokens or []),
                decoder_only_format=self.decoder_only_format,
                context_eos=self.context_eos)
            if max_raw_length < self._smallest_max_raw_length:
                self._smallest_max_raw_length = max_raw_length
            if max_raw_length > self._largest_max_raw_length:
                self._largest_max_raw_length = max_raw_length

            kwargs = {
                'mean_span_length': span_mean_length,
                'mask_ratio': span_mask_ratio,
                'prefix_tokens': prefix_tokens,
                'max_raw_length': max_raw_length,
            }
            self._noisers.append(kwargs)

        # Add "noisers" for any sequential denoising tasks
        for sequence_mask_ratio in self.sequence_mask_ratios:
            if prefix_function is not None:
                prefix_tokens = prefix_function(sequence_mask_ratio, None,
                                                self.tokenizer)
            else:
                prefix_tokens = None

            max_raw_length = self.max_seq_length - len(prefix_tokens or []) - 1
            if decoder_only_format and self.context_eos:
                max_raw_length = max_raw_length - 1

            if not self._uses_span_corruption and (
                    max_raw_length < self._smallest_max_raw_length):
                # We choose not to count sequence denoising in the smallest
                # unless there is only sequence denoising.
                self._smallest_max_raw_length = max_raw_length
            if max_raw_length > self._largest_max_raw_length:
                self._largest_max_raw_length = max_raw_length

            kwargs = {
                'mean_span_length': None,
                'mask_ratio': sequence_mask_ratio,
                'prefix_tokens': prefix_tokens,
                'max_raw_length': max_raw_length,
            }
            self._noisers.append(kwargs)

        if not self._noisers:
            raise ValueError(
                'No denoising tasks were included. Make sure to set ' + \
                '`span_mean_lengths_and_ratios` and/or `sequence_mask_ratios`.')

    @property
    def smallest_max_raw_length(self) -> int:
        return int(self._smallest_max_raw_length)

    @property
    def largest_max_raw_length(self) -> int:
        return int(self._largest_max_raw_length)

    def __call__(self, examples: List[Dict[str,
                                           Any]]) -> Dict[str, torch.Tensor]:
        """Batch examples processed by the span corrupter."""
        processed_examples = []
        for example in examples:
            # Randomly pick a "noiser" to apply to this example
            noiser = random.choice(self._noisers)
            # Apply it
            processed_examples.append(
                noise_token_sequence(
                    example,
                    mask_ratio=noiser['mask_ratio'],
                    mean_span_length=noiser['mean_span_length'],
                    prefix_tokens=noiser['prefix_tokens'],
                    max_raw_length=noiser['max_raw_length'],
                    max_seq_length=self.max_seq_length,
                    tokenizer=self.tokenizer,
                    sentinel_token_ids=self._sentinel_token_ids,
                    decoder_only_format=self.decoder_only_format,
                    context_eos=self.context_eos))
        batch = self.tokenizer.pad(processed_examples)

        # This logic prevents trimming on at least the first batch
        if not (self._allow_pad_trimming and self._seen_first_batch):
            self._seen_first_batch = True
            return batch
        self._seen_first_batch = True

        # Truncate portions of the inputs that are purely padding
        # (up to a multiple of 8)
        multiple_of = 8
        n_examples_per_length = batch['attention_mask'].sum(0)
        keep_tokens = torch.sum(n_examples_per_length > 0)
        keep_tokens = int(multiple_of * torch.ceil(keep_tokens / multiple_of))

        # Note: EncDec formatting will always produce a right-padded batch
        if self.tokenizer.padding_side == 'left' and self.decoder_only_format:
            batch['input_ids'] = batch['input_ids'][:, -keep_tokens:]
            batch['attention_mask'] = batch['attention_mask'][:, -keep_tokens:]
        else:
            batch['input_ids'] = batch['input_ids'][:, :keep_tokens]
            batch['attention_mask'] = batch['attention_mask'][:, :keep_tokens]

        if self.decoder_only_format:
            if self.tokenizer.padding_side == 'left':
                batch['labels'] = batch['labels'][:, -keep_tokens:]
                batch['bidirectional_mask'] = batch[
                    'bidirectional_mask'][:, -keep_tokens:]
            else:
                batch['labels'] = batch['labels'][:, :keep_tokens]
                batch['bidirectional_mask'] = batch[
                    'bidirectional_mask'][:, :keep_tokens]

        else:
            # Truncate portions of the decoder inputs that are purely padding
            n_examples_per_length = batch['decoder_attention_mask'].sum(0)
            keep_tokens = torch.sum(n_examples_per_length > 0)
            keep_tokens = int(multiple_of *
                              torch.ceil(keep_tokens / multiple_of))

            batch['labels'] = batch['labels'][:, :keep_tokens]
            batch['decoder_attention_mask'] = batch[
                'decoder_attention_mask'][:, :keep_tokens]
            batch['decoder_input_ids'] = batch[
                'decoder_input_ids'][:, :keep_tokens]

        # This slicing can produce non-contiguous tensors, so use .contiguous
        # to prevent related problems
        batch = {k: v.contiguous() for k, v in batch.items()}

        return batch


def build_text_denoising_dataloader(
    cfg: DictConfig,
    tokenizer: PreTrainedTokenizerBase,
    device_batch_size: int,
) -> DataLoader[Dict]:
    """Constructor function for a Mixture of Denoisers dataloader.

    This function constructs a dataloader that can be used to train an
    encoder-decoder model or a (prefix LM) decoder-only model on a text
    denoising task mixture (e.g. span corruption, or UL2).

    The underlying dataset is a :class:`StreamingTextDataset`, allowing you to
    stream raw text data or pre-tokenized text data.

    The dataloader uses a :class:`MixtureOfDenoisersCollator` to prepare the
    tokenized examples into training batches.

    Args:
        cfg (DictConfig): An omegaconf dictionary used to configure the loader:
            cfg.name (str): The type of dataloader to build. Must = "text_denoising".
            ---
            cfg.dataset.max_seq_len (int): The maximum length of sequences
                in the batch. See :class:`MixtureOfDenoisersCollator` docstring
                for details.
            cfg.dataset.packing_ratio (float, optional): If provided, this invokes
                a collator wrapper that packs device_batch_size*packing_ratio
                raw examples into device_batch_size packed examples. This helps
                minimize padding while preserving sequence integrity.
                This adds `sequence_id` to the batch, which indicates which unique
                sequence each token belongs to.
                Note: Using this feature will not change device_batch_size but it
                    will determine the number of raw examples consumed by the dataloader
                    per batch. Some examples may be discarded if they do not fit when
                    packing.
                    Select packing_ratio **carefully** based on the dataset
                    statistics, max_seq_len, and tolerance for discarding samples!
                    The packing code in `./packing.py` provides a script that can help
                    you choose the best packing_ratio.
            See :class:`StreamingTextDataset` for info on other standard config
                options within `cfg.dataset`.
            ---
            cfg.mixture_of_denoisers.decoder_only_format (bool): Whether the
                batches should use the format required for training a decoder-only
                model (if ``True``) or an encoder-decoder model (if ``False``).
            cfg.mixture_of_denoisers.span_mean_lengths_and_ratios (optional): The
                parameters for any span corruption denoising tasks to include in
                the task mixture.
                See :class:`MixtureOfDenoisersCollator` docstring for details.
            cfg.mixture_of_denoisers.sequence_mask_ratios (optional): The
                parameters for any sequence denoising tasks to include in the
                task mixture.
                See :class:`MixtureOfDenoisersCollator` docstring for details.
            cfg.mixture_of_denoisers.allow_pad_trimming (optional): Whether to
                allow the collator to trim padding when possible (if ``True``).
                Defaults to ``False``.
            cfg.mixture_of_denoisers.prefix_function (optional): Set to ``None``
                to disable the UL2-style prefixes that will be automatically
                added by default.
            ---
            See :class:`DataLoader` for standard argument options to the pytorch
                dataloader, such as `cfg.drop_last`, `cfg.num_workers`, etc.
        tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to
            prepare the data from raw text. Any missing sentinel tokens will
            be added by the collator.
        device_batch_size (int): The size of the batches (number of examples)
            that the dataloader will produce.

    Note:
        You can run the script inside `./packing.py` to quickly test the
        padding/waste rates for different `cfg.dataset.packing_ratio` choices,
        given a starting workload YAML.
    """
    assert cfg.name == 'text_denoising', f'Tried to build_denoising text dataloader with cfg.name={cfg.name}'

    collate_fn = MixtureOfDenoisersCollator(
        tokenizer=tokenizer,
        max_seq_length=cfg.dataset.max_seq_len,
        decoder_only_format=cfg.mixture_of_denoisers.decoder_only_format,
        span_mean_lengths_and_ratios=cfg.mixture_of_denoisers.get(
            'span_mean_lengths_and_ratios'),
        sequence_mask_ratios=cfg.mixture_of_denoisers.get(
            'sequence_mask_ratios'),
        allow_pad_trimming=cfg.mixture_of_denoisers.get('allow_pad_trimming',
                                                        False),
        prefix_function=cfg.mixture_of_denoisers.get('prefix_function',
                                                     ul2_prefix_function),
        context_eos=cfg.mixture_of_denoisers.get('context_eos'))

    truncate_to = cfg.mixture_of_denoisers.get('truncate_raw_tokens_to')
    if truncate_to is None:
        # By default, truncate to the largest max raw length of the denoisers
        truncate_to = collate_fn.largest_max_raw_length
    elif isinstance(truncate_to, str):
        if truncate_to.lower() == 'min':
            # Truncate to the smallest max raw length of the denoisers
            truncate_to = collate_fn.smallest_max_raw_length
        elif truncate_to.lower() == 'max':
            # Truncate to the largest max raw length of the denoisers
            truncate_to = collate_fn.largest_max_raw_length
        else:
            raise ValueError(
                f'truncate_raw_tokens_to(="{truncate_to.lower()}") must be "min", "max", a positive int, or None.'
            )
    else:
        if not isinstance(truncate_to, int):
            ValueError(
                f'truncate_raw_tokens_to(={truncate_to}) must be "min", "max", a positive int, or None.'
            )
        if truncate_to < 0:
            ValueError(
                f'truncate_raw_tokens_to(={truncate_to}) must be "min", "max", a positive int, or None.'
            )

    dataset = StreamingTextDataset(
        local=cfg.dataset.local,
        tokenizer=tokenizer,
        max_seq_len=truncate_to,
        remote=cfg.dataset.get('remote'),
        split=cfg.dataset.get('split'),
        shuffle=cfg.dataset.get('shuffle', False),
        predownload=cfg.dataset.get('predownload', 100_000),
        keep_zip=cfg.dataset.get('keep_zip', False),
        download_retry=cfg.dataset.get('download_retry', 2),
        download_timeout=cfg.dataset.get('download_timeout', 60),
        validate_hash=cfg.dataset.get('validate_hash'),
        shuffle_seed=cfg.dataset.get('shuffle_seed', 9176),
        num_canonical_nodes=cfg.dataset.get('num_canonical_nodes', 128),
        batch_size=device_batch_size,
    )

    if dataset.tokenizer.pad_token is None:
        dataset.tokenizer.pad_token = dataset.tokenizer.eos_token

    if cfg.dataset.get('packing_ratio'):
        n_examples_to_pack = int(device_batch_size * cfg.dataset.packing_ratio)
        if n_examples_to_pack < device_batch_size:
            raise ValueError('packing_ratio must be >= 1, if supplied')
        if not cfg.mixture_of_denoisers.decoder_only_format:
            raise NotImplementedError(
                'On-the-fly packing is currently only supported for decoder-only formats.'
            )
        collate_fn = BinPackWrapper(
            collator=collate_fn,
            target_batch_size=device_batch_size,
            max_seq_len=cfg.dataset.max_seq_len,
            pad_token_id=dataset.tokenizer.pad_token_id,
            padding_side=dataset.tokenizer.padding_side,
            max_leftover_bins_to_keep=cfg.dataset.get(
                'max_leftover_bins_to_keep'),
        )
        device_batch_size = n_examples_to_pack
    elif cfg.dataset.get('max_leftover_bins_to_keep') is not None:
        raise ValueError(
            'cfg.dataset.max_leftover_bins_to_keep has been defined, ' +\
            'but cfg.dataset.packing_ratio has not been set. Please set ' +\
            'the latter to turn on packing or remove the former from the config.')

    return DataLoader(
        dataset,
        collate_fn=collate_fn,
        batch_size=device_batch_size,
        drop_last=cfg.drop_last,
        num_workers=cfg.num_workers,
        pin_memory=cfg.get('pin_memory', True),
        prefetch_factor=cfg.get('prefetch_factor', 2),
        persistent_workers=cfg.get('persistent_workers', False),
        timeout=cfg.get('timeout', 0),
    )


def noise_token_sequence(
    example: Union[torch.Tensor, Mapping[str, Any]],
    mask_ratio: float,
    mean_span_length: Optional[float],
    prefix_tokens: Optional[Sequence[int]],
    max_raw_length: int,
    max_seq_length: int,
    tokenizer: PreTrainedTokenizerBase,
    sentinel_token_ids: np.ndarray,
    decoder_only_format: bool,
    context_eos: bool,
) -> Dict[str, torch.Tensor]:
    """Span corruption applicable to all UL2 denoising tasks."""
    # Extract the raw text tokens (trim if we need to)
    if isinstance(example, torch.Tensor):
        # If the example is a tensor, assume is the raw tokens with no padding
        tokens = example
        length = len(tokens)
    else:
        tokens = example['input_ids']
        length = sum(example['attention_mask'])
    if length > max_raw_length:
        length = max_raw_length
    if tokenizer.padding_side == 'left':
        tokens = tokens[-length:]
    else:
        tokens = tokens[:length]

    prefix_tokens = prefix_tokens or []

    if length < 1:
        raise ValueError('Example cannot be empty but token length <1.')

    # mean_span_length==None is a special case for "sequential" denoising
    # (where a single span at the end of the sequence is masked)
    if mean_span_length is None:
        # This ensures that exactly 1 span will be produced and that
        # trimming to max_seq_length won't cut off any <EOS> token.
        # In the decoder-only case, this won't insert new tokens.
        if mask_ratio <= 0.5:
            u = np.random.uniform(low=0.0, high=mask_ratio * 2)
        else:
            u = np.random.uniform(low=(mask_ratio * 2) - 1, high=1.0)
        mean_span_length = float(np.round(1 + u * (length - 1)))
        mask_ratio = mean_span_length / length
        use_sentinels = False
    else:
        use_sentinels = True

    # Generate the mask
    # Note: this function can be used for all the UL2 noising functions
    mask = _sample_mask_array(length, mask_ratio, mean_span_length)
    # The sequence should always be unmasked at the beginning
    assert mask[0] == 0

    # Generate the input/label sequences given the raw tokens and the mask
    tokens_inputs = _apply_mask(tokens,
                                mask,
                                use_sentinels,
                                tokenizer.eos_token_id,
                                sentinel_token_ids,
                                ensure_eos=context_eos)
    tokens_labels = _apply_mask(tokens,
                                1 - mask,
                                use_sentinels,
                                tokenizer.eos_token_id,
                                sentinel_token_ids,
                                ensure_eos=True)

    # Tag the inputs with any prefix
    if prefix_tokens:
        tokens_inputs = np.concatenate([prefix_tokens, tokens_inputs])

    # Trim if necessary
    if len(tokens_inputs) > max_seq_length:
        raise ValueError('This should not exceed the max length')
    if len(tokens_labels) > max_seq_length:
        raise ValueError('This should not exceed the max length')

    tokens_inputs = torch.LongTensor(tokens_inputs)
    tokens_labels = torch.LongTensor(tokens_labels)

    if decoder_only_format:
        return _format_tokens_for_decoder_only(tokens_inputs, tokens_labels,
                                               max_seq_length,
                                               tokenizer.pad_token_id,
                                               tokenizer.padding_side)
    return _format_tokens_for_encoder_decoder(tokens_inputs, tokens_labels,
                                              max_seq_length,
                                              tokenizer.pad_token_id)


def _get_max_starting_length(max_length: int, mask_ratio: float,
                             mean_span_length: float, n_prefix_tokens: int,
                             decoder_only_format: bool,
                             context_eos: bool) -> int:
    """Get max num raw tokens that will fit max_length."""

    def sequence_stats(length: int):
        length = np.maximum(length, 2)
        num_noise_tokens = int(np.round(mask_ratio * float(length)))
        num_noise_tokens = np.minimum(np.maximum(num_noise_tokens, 1),
                                      length - 1)
        num_spans = int(np.round(float(num_noise_tokens) / mean_span_length))
        num_noise_spans = np.maximum(num_spans, 1)
        num_nonnoise_tokens = length - num_noise_tokens
        # Prefix, sentinel, and EOS added to input for Enc-Dec
        extra_inp_tokens = n_prefix_tokens + num_noise_spans + int(context_eos)
        # Sentinel and EOS added to target
        extra_targ_tokens = num_noise_spans + 1
        # Sequence totals after corruption
        total_inp_tokens = num_nonnoise_tokens + extra_inp_tokens
        total_targ_tokens = num_noise_tokens + extra_targ_tokens
        return total_inp_tokens, total_targ_tokens

    def length_fits(length: int) -> bool:
        total_inp_tokens, total_targ_tokens = sequence_stats(length)
        if decoder_only_format:
            return (total_inp_tokens + total_targ_tokens) <= max_length
        return (total_inp_tokens <= max_length) and (total_targ_tokens <=
                                                     max_length)

    # Start with a definitely too-long sequence and reduce until it fits
    num_raw_tokens = max_length * 2
    while num_raw_tokens > 0:
        if length_fits(num_raw_tokens):
            return num_raw_tokens
        num_raw_tokens -= 1
    raise ValueError(
        'Unable to find a starting sequence length that can fit given the corruption and max_length parameters.'
    )


def _sample_mask_array(length: int, mask_ratio: float,
                       mean_span_length: float) -> np.ndarray:
    """Samples a span corruption mask."""
    if mask_ratio == 0.0:
        return np.zeros(length)
    # This first block computes the number of noise/non-noise spans and the
    # total tokens in each. Extra steps are taken to handle edge cases that
    # cause degeneracy.
    starting_length = length
    length = np.maximum(length, 2)
    num_noise_tokens = int(np.round(mask_ratio * float(length)))
    num_noise_tokens = np.minimum(np.maximum(num_noise_tokens, 1), length - 1)
    num_spans = int(np.round(float(num_noise_tokens) / mean_span_length))
    num_noise_spans = np.maximum(num_spans, 1)
    num_nonnoise_tokens = length - num_noise_tokens

    # Sample the noise/non-noise span lengths and interleave them to
    # generate the mask array.
    # Note: We always start with a non-noise span.
    def _sample_span_lengths(total_tokens: int, num_spans: int) -> np.ndarray:
        """Samples lengths of num_spans segments.

        Note: the combined length of segments equals total_tokens.
        """
        span_markers = np.less(np.arange(total_tokens - 1), num_spans -
                               1)[np.random.permutation(total_tokens - 1)]
        span_start_indicator = np.concatenate([np.array([0]), span_markers])
        span_id = np.cumsum(span_start_indicator).reshape(-1, 1)
        spans = np.arange(num_spans).reshape(1, -1)
        span_lengths = np.sum(span_id == spans, axis=0)
        return span_lengths

    noise_span_lengths = _sample_span_lengths(num_noise_tokens, num_noise_spans)
    nonnoise_span_lengths = _sample_span_lengths(num_nonnoise_tokens,
                                                 num_noise_spans)
    interleaved_span_lengths = np.reshape(
        np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1),
        [num_noise_spans * 2])

    span_starts = np.cumsum(interleaved_span_lengths)[:-1]
    span_start_indicator = np.zeros(length)
    span_start_indicator[span_starts] = 1
    span_id = np.cumsum(span_start_indicator)
    is_noise = np.equal(np.mod(span_id, 2), 1)

    mask = is_noise[:starting_length]

    return mask


def _apply_mask(tokens: Union[torch.Tensor, Sequence[int], np.ndarray],
                mask: np.ndarray,
                use_sentinels: bool,
                eos_token_id: int,
                sentinel_token_ids: np.ndarray,
                ensure_eos: bool = True) -> np.ndarray:
    """Remove or replace masked portions from token sequence."""
    if not use_sentinels:
        # The logic is simple if we don't use sentinel tokens
        noised_tokens = np.array(tokens)[np.logical_not(mask)]

        # Ensure there's an end-of-sentence token at the end
        if ensure_eos and (noised_tokens[-1] != eos_token_id):
            noised_tokens = np.concatenate(
                [noised_tokens, np.array([eos_token_id])])

        return noised_tokens

    # Masking at previous token
    prev_token_mask = np.concatenate([np.array([0]), mask[:-1]])

    # Decompose mask into start-of-span mask and non-start-of-span mask
    start_of_noise_span_token = np.logical_and(mask,
                                               np.logical_not(prev_token_mask))
    nonstart_noise_span_token = np.logical_and(mask, prev_token_mask)

    # Replace tokens at the start of each noise span with its corresponding
    # sentinel token
    sentinel_idx = np.minimum(len(sentinel_token_ids),
                              np.cumsum(start_of_noise_span_token)) - 1
    tokens = np.where(start_of_noise_span_token,
                      sentinel_token_ids[sentinel_idx], tokens)

    # Remove masked tokens (but preserving the sentinel tokens)
    noised_tokens = tokens[np.logical_not(nonstart_noise_span_token)]

    # Ensure there's an end-of-sentence token at the end
    if ensure_eos and (noised_tokens[-1] != eos_token_id):
        noised_tokens = np.concatenate(
            [noised_tokens, np.array([eos_token_id])])
    return noised_tokens


def _format_tokens_for_encoder_decoder(
    tokens_inputs: torch.LongTensor,
    tokens_labels: torch.LongTensor,
    max_seq_length: int,
    pad_token_id: int,
) -> Dict[str, torch.Tensor]:
    """Package the input/label sequence for an EncDec model."""
    example = {}
    # Re-populate with an empty, padded example
    example['input_ids'] = torch.full((max_seq_length,),
                                      pad_token_id,
                                      dtype=torch.int32)
    example['labels'] = torch.full((max_seq_length,),
                                   _HF_IGNORE_INDEX,
                                   dtype=torch.int32)
    example['attention_mask'] = torch.zeros_like(example['input_ids'])
    example['decoder_attention_mask'] = torch.zeros_like(example['labels'])

    # Fill in with processed results (Note: EncDec format is right-padded)
    example['input_ids'][:len(tokens_inputs)] = tokens_inputs
    example['labels'][:len(tokens_labels)] = tokens_labels
    example['attention_mask'][:len(tokens_inputs)] = 1
    example['decoder_attention_mask'][:len(tokens_labels)] = 1

    # Best practice is to include decoder_input_ids (= right-shifted labels)
    example['decoder_input_ids'] = torch.full_like(example['labels'],
                                                   pad_token_id)
    example['decoder_input_ids'][1:len(tokens_labels)] = tokens_labels[:-1]
    return example


def _format_tokens_for_decoder_only(
    tokens_inputs: torch.LongTensor,
    tokens_labels: torch.LongTensor,
    max_seq_length: int,
    pad_token_id: int,
    padding_side: str,
) -> Dict[str, torch.Tensor]:
    """Package the input/label sequence for an decoder-only model."""
    example = {}
    # Re-populate with an empty, padded example
    example['input_ids'] = torch.full((max_seq_length,),
                                      pad_token_id,
                                      dtype=torch.int32)
    example['labels'] = torch.full((max_seq_length,),
                                   _HF_IGNORE_INDEX,
                                   dtype=torch.int32)
    example['attention_mask'] = torch.full((max_seq_length,),
                                           0,
                                           dtype=torch.bool)
    example['bidirectional_mask'] = torch.full((max_seq_length,),
                                               0,
                                               dtype=torch.bool)

    n_input = len(tokens_inputs)
    n_label = len(tokens_labels)
    n_concat = n_input + n_label
    assert n_concat <= max_seq_length, f'{n_concat=}, {n_input=}, {n_label=}'

    tokens_concat = torch.concat([tokens_inputs, tokens_labels], dim=0)

    # Fill in with the processed results
    if padding_side == 'left':
        example['input_ids'][-n_concat:] = tokens_concat
        # `labels` copies `input_ids` but with -100 at
        # non-loss-generating tokens. `labels` will be shifted in the
        # model code when computing loss.
        example['labels'][-n_concat:] = tokens_concat
        example['labels'][-n_concat:-n_label] = _HF_IGNORE_INDEX
        example['attention_mask'][-n_concat:] = 1
        example['bidirectional_mask'][-n_concat:-n_label] = 1
    else:
        example['input_ids'][:n_concat] = tokens_concat
        # See above comment regarding `labels`
        example['labels'][:n_concat] = tokens_concat
        example['labels'][:n_input] = _HF_IGNORE_INDEX
        example['attention_mask'][:n_concat] = 1
        example['bidirectional_mask'][:n_input] = 1
    return example


# Helpful to test if your dataloader is working locally
# Run `python denoising.py [local] [remote, optional]` and verify that batches
# are printed out
if __name__ == '__main__':
    from llmfoundry.utils.builders import build_tokenizer

    local = sys.argv[1]
    if len(sys.argv) > 2:
        remote = sys.argv[2]
    else:
        remote = local
    print(f'Reading val split from {remote} -> {local}')

    decoder_only = True

    cfg = {
        'name': 'text_denoising',
        'dataset': {
            'local': local,
            'remote': remote,
            'split': 'val',  # 'val_small',
            'shuffle': False,
            'max_seq_len': 2048 if decoder_only else 1024,
            'packing_ratio': 4.5,
            'predownload': 1000,
            'keep_zip': True,  # in case we need compressed files after testing
        },
        'mixture_of_denoisers': {
            'decoder_only_format': decoder_only,
            'span_mean_lengths_and_ratios': [[3, .15], [8, .5]],
            'sequence_mask_ratios': 0.25,
        },
        'drop_last': False,
        'num_workers': 0,
    }
    cfg = om.create(cfg)
    device_batch_size = 2

    tokenizer_name = 'EleutherAI/gpt-neox-20b' if decoder_only else 't5-base'
    tokenizer_kwargs = {'model_max_length': cfg.dataset.max_seq_len}
    tokenizer = build_tokenizer(tokenizer_name=tokenizer_name,
                                tokenizer_kwargs=tokenizer_kwargs)

    loader = build_text_denoising_dataloader(cfg, tokenizer, device_batch_size)
    assert isinstance(loader.dataset, StreamingTextDataset)

    print(f'\n\nTRUNCATING TO: {loader.dataset.max_seq_len}\n\n')

    packing = cfg.dataset.get('packing_ratio') is not None
    if packing:
        tokenizer = loader.collate_fn.base_collator.tokenizer
    else:
        tokenizer = loader.collate_fn.tokenizer
    batch_ix = 0
    for batch in loader:
        if batch_ix >= 50:
            batch_ix += 1
            break
        if batch_ix >= 5:
            if not packing:
                break
            batch_ix += 1
            continue
        print('\n')
        print('#' * 20, f'Batch {batch_ix}', '#' * 20)
        for k, v in batch.items():
            print(k, v.shape, v.dtype)
        for sample_ix, token_sample in enumerate(batch['input_ids']):
            if cfg.mixture_of_denoisers.decoder_only_format:
                labels = batch['labels'][sample_ix]
                attn_inputs = batch['bidirectional_mask'][sample_ix].to(
                    torch.bool)
                attn_full = batch['attention_mask'][sample_ix].to(torch.bool)
                attn_labels = torch.logical_xor(attn_inputs, attn_full)
                print('-' * 20, f' Sample {sample_ix} ', '-' * 20)
                if packing:
                    for subseq in range(
                            int(batch['sequence_id'][sample_ix].max()) + 1):
                        is_subseq = batch['sequence_id'][sample_ix] == subseq
                        print(
                            '\033[93m{}\033[00m\n'.format('Input:  '),
                            tokenizer.decode(token_sample[torch.logical_and(
                                is_subseq, attn_inputs)]))
                        print(
                            '\033[92m{}\033[00m\n'.format('Target: '),
                            tokenizer.decode(labels[torch.logical_and(
                                is_subseq, attn_labels)]))
                else:
                    print('\033[91m{}\033[00m\n'.format('Full:   '),
                          tokenizer.decode(token_sample[attn_full]))
                    print('\033[93m{}\033[00m\n'.format('Input:  '),
                          tokenizer.decode(token_sample[attn_inputs]))
                    print('\033[92m{}\033[00m\n'.format('Target: '),
                          tokenizer.decode(labels[attn_labels]))
            else:
                labels = batch['labels'][sample_ix]
                attn_inputs = batch['attention_mask'][sample_ix].to(torch.bool)
                attn_labels = batch['decoder_attention_mask'][sample_ix].to(
                    torch.bool)
                print('-' * 20, f' Sample {sample_ix} ', '-' * 20)
                print('\033[93m{}\033[00m\n'.format('Input:  '),
                      tokenizer.decode(token_sample[attn_inputs]))
                print('\033[92m{}\033[00m\n'.format('Target: '),
                      tokenizer.decode(labels[attn_labels]))
        batch_ix += 1

    if packing:
        print(f'Padding = {100*(1-loader.collate_fn.efficiency):5.2f}%')
        print(f'Waste   = {100*loader.collate_fn.waste:5.2f}%')