File size: 16,100 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""Build a StreamingTextDataset dataset and dataloader for training."""
import os
from itertools import islice
from typing import (Any, Callable, Dict, List, Mapping, Optional, Sequence,
Union, cast)
import numpy as np
import torch
import transformers
from omegaconf import DictConfig
from omegaconf import OmegaConf as om
from streaming import Stream, StreamingDataset
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase
class StreamingTextDataset(StreamingDataset):
"""Generic text dataset using MosaicML's StreamingDataset.
Args:
tokenizer (Tokenizer): HuggingFace tokenizer to
tokenize samples.
max_seq_len (int): The max sequence length of each sample.
streams (Sequence[Stream], optional): One or more Streams to stream/cache samples from,
which may be upsampled or downsampled. StreamingDataset uses either ``streams`` or
``remote``/``local``. Defaults to ``None``.
remote (str, optional): Remote path or directory to download the dataset from. If ``None``,
its data must exist locally. StreamingDataset uses either ``streams`` or
``remote``/``local``. Defaults to ``None``.
local (str, optional): Local working directory to download shards to. This is where shards
are cached while they are being used. Uses a temp directory if not set.
StreamingDataset uses either ``streams`` or ``remote``/``local``. Defaults to ``None``.
split (str, optional): Which dataset split to use, if any. If provided, we stream from/to
the ``split`` subdirs of ``remote`` and ``local``. Defaults to ``None``.
download_retry (int): Number of download re-attempts before giving up. Defaults to ``2``.
download_timeout (float): Number of seconds to wait for a shard to download before raising
an exception. Defaults to ``60``.
validate_hash (str, optional): Optional hash or checksum algorithm to use to validate
shards. Defaults to ``None``.
keep_zip (bool): Whether to keep or delete the compressed form when decompressing
downloaded shards. If ``False``, keep iff remote is local or no remote. Defaults to
`False``.
epoch_size (int, optional): Number of samples to draw per epoch balanced across all
streams. If ``None``, takes its value from the total number of underlying samples.
Provide this field if you are weighting streams relatively to target a larger or
smaller epoch size. Defaults to ``None``.
predownload (int, optional): Target number of samples ahead to download the shards of while
iterating. Defaults to ``100_000``.
cache_limit (Union[int, str], optional) - Maximum size in bytes of this StreamingDataset's
shard cache. Before downloading a shard, the least recently used resident shard(s) may
be evicted (deleted from the local cache) in order to stay under the limit. Set to None
to disable shard eviction. Supports integer bytes as well as string human-readable
bytes (e.g., 100b, 64kb, 77mb, and so on). Defaults to None.
partition_algo (str): Which partitioning algorithm to use. Defaults to ``orig``.
num_canonical_nodes (int, optional): Canonical number of nodes for shuffling with
resumption. Defaults to ``None``, which is interpreted as the number of nodes of the
initial run.
batch_size (int, optional): Batch size of its DataLoader, which affects how the dataset is
partitioned over the workers. Defaults to ``None``.
shuffle (bool): Whether to iterate over the samples in randomized order. Defaults to
``False``.
shuffle_algo (str): Which shuffling algorithm to use. Defaults to ``py1b``.
shuffle_seed (int): Seed for Deterministic data shuffling. Defaults to ``9176``.
shuffle_block_size (int): Unit of shuffle. Defaults to ``1 << 18``.
sampling_method (str): Which sampling method to use, either ``balanced`` or ``fixed``.
Defaults to ``balanced``.
sampling_granularity (int): When picking samples for a stream's final partial repeat,
how many samples to pick from the same shard at a time (``1`` for evenly balanced
across shards, ``1000`` to pick 1000 samples from the same shard at a time, etc).
Defaults to ``1``.
batching_method (str): Which batching method to use, either ``random``, ``stratified``, or
``per_stream``. Defaults to ``random``.
"""
def __init__(self,
tokenizer: PreTrainedTokenizerBase,
max_seq_len: int,
streams: Optional[Sequence[Stream]] = None,
remote: Optional[str] = None,
local: Optional[str] = None,
split: Optional[str] = None,
download_retry: int = 2,
download_timeout: float = 60,
validate_hash: Optional[str] = None,
keep_zip: bool = False,
epoch_size: Optional[int] = None,
predownload: int = 100_000,
cache_limit: Optional[Union[int, str]] = None,
partition_algo: str = 'orig',
num_canonical_nodes: Optional[int] = None,
batch_size: Optional[int] = None,
shuffle: bool = False,
shuffle_algo: str = 'py1b',
shuffle_seed: int = 9176,
shuffle_block_size: int = 1 << 18,
sampling_method: str = 'balanced',
sampling_granularity: int = 1,
batching_method: str = 'random',
**kwargs: Any):
group_method = kwargs.pop('group_method', None)
if group_method is not None:
raise NotImplementedError(
'group_method is deprecated and has been removed.\nTo ' +
'concatenate, use the --concat_tokens ' +
'argument when creating your MDS dataset with concat_c4.py')
if len(kwargs) > 0:
raise ValueError(
f'StreamingTextDataset() got an unexpected keyword argument: {kwargs}'
)
if local is not None and (remote is None or (local == remote)):
if os.path.isdir(local):
contents = set(os.listdir(local))
if split not in contents:
raise ValueError(
f'local directory {local} does not contain split {split}'
)
# TODO: discover where yamls are being converted incorrect, but temporary workaround
if isinstance(shuffle_block_size, float):
shuffle_block_size = int(shuffle_block_size)
# Build Dataset
super().__init__(
streams=streams,
remote=remote,
local=local,
split=split,
download_retry=download_retry,
download_timeout=download_timeout,
validate_hash=validate_hash,
keep_zip=keep_zip,
epoch_size=epoch_size,
predownload=predownload,
cache_limit=cache_limit,
partition_algo=partition_algo,
num_canonical_nodes=num_canonical_nodes,
batch_size=batch_size,
shuffle=shuffle,
shuffle_algo=shuffle_algo,
shuffle_seed=shuffle_seed,
shuffle_block_size=shuffle_block_size,
sampling_method=sampling_method,
sampling_granularity=sampling_granularity,
batching_method=batching_method,
)
self.tokenizer = tokenizer
self.max_seq_len = max_seq_len
# How to tokenize a text sample to a token sample
def _tokenize(self, text_sample: Mapping) -> Dict[str, List[int]]:
if self.tokenizer._pad_token is None:
# Some tokenizers (e.g. GPT2 tokenizer) have no padding token which causes bugs
raise RuntimeError(
'If tokenizing on-the-fly, tokenizer must have a pad_token_id')
return self.tokenizer(text_sample['text'],
truncation=True,
padding='max_length',
max_length=self.max_seq_len)
def _read_binary_tokenized_sample(self, sample: Dict[str,
Any]) -> torch.Tensor:
return torch.from_numpy(
np.frombuffer(sample['tokens'],
dtype=np.int64)[:self.max_seq_len].copy())
# How to process a sample
def __getitem__(self,
idx: int) -> Union[Dict[str, List[int]], torch.Tensor]:
sample = super().__getitem__(idx)
if 'text' in sample:
token_sample = self._tokenize(sample)
elif 'tokens' in sample:
token_sample = self._read_binary_tokenized_sample(sample)
else:
raise RuntimeError(
'StreamingTextDataset needs samples to have a `text` or `tokens` column'
)
return token_sample
class ConcatenatedSequenceCollatorWrapper:
"""Collator wrapper to add sequence_id to batch."""
def __init__(
self,
base_collator: Callable,
eos_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
):
self.base_collator = base_collator
if (eos_token_id is None) and (bos_token_id is None):
raise ValueError(
'Must supply a value for either eos_token_id or bos_token_id, but got None for both.'
)
if (eos_token_id is not None) and (bos_token_id is not None):
raise ValueError(
'Cannot use *both* EOS and BOS tokens for detecting sequence boundaries. ' +\
'Please supply `eos_token_id` if sequences end with an EOS token, or use ' +\
'`bos_token_id` if sequences start with a BOS token.'
)
if eos_token_id is None:
self.split_token_id = cast(int, bos_token_id)
self.bos_mode = True
else:
self.split_token_id = eos_token_id
self.bos_mode = False
def __call__(self, examples: List[Any]) -> Dict[str, torch.Tensor]:
batch = self.base_collator(examples)
batch['sequence_id'] = self.get_sequence_id_from_batch(batch)
return batch
def get_sequence_id_from_batch(
self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
is_separator = torch.eq(batch['input_ids'], self.split_token_id)
cumulative_sep = torch.cumsum(is_separator,
dim=1).to(batch['input_ids'].dtype)
# If separator token is bos, we're already done
if self.bos_mode:
return cumulative_sep
# If separator token is eos, right shift 1 space
left_zeros = cumulative_sep.new_zeros((cumulative_sep.shape[0], 1))
return torch.cat([left_zeros, cumulative_sep[:, :-1]], dim=1)
def build_text_dataloader(
cfg: DictConfig,
tokenizer: PreTrainedTokenizerBase,
device_batch_size: int,
) -> DataLoader:
assert cfg.name == 'text', f'Tried to build text dataloader with cfg.name={cfg.name}'
if cfg.dataset.get('group_method', None) is not None:
raise NotImplementedError(
'group_method is deprecated and has been removed.\nTo ' +
'concatenate, use the --concat_tokens ' +
'argument when creating your MDS dataset with convert_dataset_hf.py'
)
# get kwargs
streams_dict = cfg.dataset.pop('streams', None)
mlm_probability = cfg.dataset.pop('mlm_probability', None)
eos_token_id = cfg.dataset.pop('eos_token_id', None)
bos_token_id = cfg.dataset.pop('bos_token_id', None)
# build streams
streams = None
if streams_dict is not None:
streams = []
for _, stream in streams_dict.items():
# stream is the streams kwargs
# fwd all kwargs with **stream allows streaming to check args
streams.append(Stream(**stream))
# build dataset potentially with streams
dataset = StreamingTextDataset(
tokenizer=tokenizer,
streams=streams,
batch_size=device_batch_size,
**cfg.dataset,
)
collate_fn = transformers.DataCollatorForLanguageModeling(
tokenizer=dataset.tokenizer,
mlm=mlm_probability is not None,
mlm_probability=mlm_probability)
if (eos_token_id is not None) or (bos_token_id is not None):
# Note: Will raise an error if both are non-None
collate_fn = ConcatenatedSequenceCollatorWrapper(
base_collator=collate_fn,
eos_token_id=eos_token_id,
bos_token_id=bos_token_id)
return DataLoader(
dataset,
collate_fn=collate_fn,
batch_size=device_batch_size,
drop_last=cfg.drop_last,
num_workers=cfg.num_workers,
pin_memory=cfg.get('pin_memory', True),
prefetch_factor=cfg.get('prefetch_factor', 2),
persistent_workers=cfg.get('persistent_workers', True),
timeout=cfg.get('timeout', 0),
)
# Helpful to test if your dataloader is working locally
# Run `python data.py --local_path [local] [--remote_path remote, optional]` and verify that batches are printed out
if __name__ == '__main__':
import argparse
from llmfoundry.utils.builders import build_tokenizer
parser = argparse.ArgumentParser()
parser.add_argument('--tokenizer',
type=str,
default='EleutherAI/gpt-neox-20b',
help='the name of the tokenizer to use')
parser.add_argument('--local_path',
type=str,
required=True,
help='the path to the local copy of the dataset')
parser.add_argument(
'--remote_path',
type=str,
default=None,
help='the path to the remote copy to stream from (optional)')
parser.add_argument('--split',
type=str,
default='val',
help='which split of the dataset to use')
parser.add_argument('--max_seq_len',
type=int,
default=32,
help='max sequence length to test')
args = parser.parse_args()
if args.remote_path is not None:
print(
f'Reading {args.split} split from {args.local_path} <- streamed from <- {args.remote_path}'
)
else:
print(f'Reading {args.split} split from {args.local_path}')
cfg = {
'name': 'text',
'dataset': {
'local': args.local_path,
'remote': args.remote_path,
'split': args.split,
'shuffle': False,
'max_seq_len': args.max_seq_len,
'keep_zip': True, # in case we need compressed files after testing
},
'drop_last': False,
'num_workers': 4,
}
cfg = om.create(cfg)
device_batch_size = 2
tokenizer_name = args.tokenizer
tokenizer_kwargs = {'model_max_length': args.max_seq_len}
tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)
loader = build_text_dataloader(cfg, tokenizer, device_batch_size)
assert isinstance(loader.dataset, StreamingTextDataset)
tokenizer = loader.dataset.tokenizer
for batch_ix, batch in enumerate(islice(loader, 5)):
print('\n')
print('#' * 20, f'Batch {batch_ix}', '#' * 20)
for k, v in batch.items():
print(k, v.shape, v.dtype)
for sample_ix, token_sample in enumerate(batch['input_ids']):
print('-' * 20, f' Sample {sample_ix} ', '-' * 20)
print(tokenizer.decode(token_sample))
|