File size: 7,161 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

"""Implements a Hugging Prefix LM wrapped inside a :class:`.ComposerModel`."""

from __future__ import annotations

from typing import Mapping, MutableMapping

from composer.metrics.nlp import LanguageCrossEntropy, MaskedAccuracy
from composer.utils import dist
from omegaconf import DictConfig
from transformers import (AutoConfig, AutoModelForCausalLM,
                          PreTrainedTokenizerBase)

from llmfoundry.models.hf.hf_fsdp import hf_get_init_device
from llmfoundry.models.hf.model_wrapper import HuggingFaceModelWithZLoss
from llmfoundry.models.utils import (adapt_tokenizer_for_denoising,
                                     add_bidirectional_mask_if_missing,
                                     convert_hf_causal_lm_to_prefix_lm,
                                     init_empty_weights)

__all__ = ['ComposerHFPrefixLM']

# HuggingFace hardcodes the ignore index to -100
_HF_IGNORE_INDEX = -100


class ComposerHFPrefixLM(HuggingFaceModelWithZLoss):
    """Configures a :class:`.HuggingFaceModel` around a Prefix LM.

    Note: HuggingFace does not natively support Prefix LM-style models. This function uses
    `transformers.AutoModelForCausalLM` to instantiate a Causal LM, then uses a conversion utility
    to turn the model into a Prefix LM. Currently, that conversion utility only supports the
    following HuggingFace Causal LM types:
        - `GPT2LMHeadModel`
        - `GPTNeoForCausalLM`
        - `GPTNeoXForCausalLM`
        - `GPTJForCausalLM`
        - `BloomForCausalLM`
        - `OPTForCausalLM`

    Args:
        cfg (DictConfig): An omegaconf dictionary used to configure the model:
            cfg.pretrained_model_name_or_path (str): The name of or local path to
                the HF model (e.g., `gpt2` to instantiate a GPT2LMHeadModel). The model
                will be converted to a Prefix LM during initialization.
            cfg.config_overrides (dict, optional): An optional dictionary of keyword
                arguments that override the default configuration associated with
                cfg.pretrained_model_name_or_path. Default: ``{}``.
            cfg.pretrained (bool): Whether to instantiate the model with pre-trained
                weights coming from cfg.pretrained_model_name_or_path. If ``True``,
                cfg.config_overrides must be compatible with the pre-trained weights.
            cfg.init_device ('cpu' | 'meta'): Which device, 'cpu' or 'meta', to
                initialize the model on. Currently, `meta` is only supported when
                cfg.pretrained is ``False``. Default: ``'cpu'``.
            cfg.z_loss (float, optional): The coefficient of the z-loss. If >0.0, this
                the z-loss will be multiplied by this value before being added to the
                standard loss term. Default: ``0.0``.
            cfg.adapt_vocab_for_denoising (bool, optional):  Whether to adapt the vocab
                of the model/tokenizer to include sentinel tokens that are used in denoising
                tasks like Span Corruption. If you intend to load from an existing Composer
                checkpoint that was trained on such a task, set this to ``True`` to ensure
                that the model vocab size matches your checkpoint's vocab size when loading
                the weights. Default: ``False``.
        tokenizer (PreTrainedTokenizer): The tokenizer that the model will use.
    """

    def __init__(self, om_model_config: DictConfig,
                 tokenizer: PreTrainedTokenizerBase):
        config = AutoConfig.from_pretrained(
            om_model_config.pretrained_model_name_or_path,
            trust_remote_code=om_model_config.get('trust_remote_code', True),
            use_auth_token=om_model_config.get('use_auth_token', False),
        )

        # set config overrides
        for k, v in om_model_config.get('config_overrides', {}).items():
            if not hasattr(config, k):
                raise ValueError(
                    f'config does not have attribute "{k}" to override ({k}: {v}).'
                )

            attr = getattr(config, k)
            if isinstance(attr, Mapping):
                extra_keys = [_k for _k in v.keys() if _k not in attr.keys()]
                if extra_keys:
                    raise ValueError(
                        f'Config dict override got unknown keys. ' +
                        f'Extra keys: {extra_keys}. ' +
                        f'Expected (a subset of) keys: {list(attr.keys())}.')
                getattr(config, k).update(v)
            else:
                setattr(config, k, v)

        # Set up the tokenizer (add tokens for denoising sentinels if needed)
        if om_model_config.get('adapt_vocab_for_denoising', False):
            adapt_tokenizer_for_denoising(tokenizer)

        init_device = om_model_config.get('init_device', 'cpu')

        # Get the device we want to initialize, and use the
        # resolved version to initialize the HF model
        resolved_init_device = hf_get_init_device(init_device)

        # We need to have all non-zero local ranks be not-pretrained
        # Rank 0 will still be pretrained, and distribute the weights appropriately
        if dist.get_local_rank() != 0 and init_device == 'mixed':
            om_model_config.pretrained = False

        if resolved_init_device == 'cpu':
            if om_model_config.pretrained:
                model = AutoModelForCausalLM.from_pretrained(
                    om_model_config.pretrained_model_name_or_path,
                    config=config)
            else:
                model = AutoModelForCausalLM.from_config(config)
        elif resolved_init_device == 'meta':
            if om_model_config.pretrained:
                raise ValueError(
                    'Setting cfg.pretrained=True is not supported when init_device="meta".'
                )
            with init_empty_weights(include_buffers=False):
                model = AutoModelForCausalLM.from_config(config)
        else:
            raise ValueError(
                f'init_device="{init_device}" must be either "cpu" or "meta".')

        # Convert the Causal LM into a Prefix LM via our custom wrapper
        model = convert_hf_causal_lm_to_prefix_lm(model)

        metrics = [
            LanguageCrossEntropy(ignore_index=_HF_IGNORE_INDEX),
            MaskedAccuracy(ignore_index=_HF_IGNORE_INDEX)
        ]

        composer_model = super().__init__(model=model,
                                          shift_labels=True,
                                          tokenizer=tokenizer,
                                          metrics=metrics,
                                          z_loss=om_model_config.get(
                                              'z_loss', 0.0),
                                          init_device=init_device)

        return composer_model

    def forward(self, batch: MutableMapping):
        # Add bidirectional_mask if it is missing and can be constructed
        add_bidirectional_mask_if_missing(batch)
        return super().forward(batch)