File size: 13,877 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import logging
import os
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from composer import algorithms
from composer.callbacks import (EarlyStopper, Generate, LRMonitor,
MemoryMonitor, OptimizerMonitor,
RuntimeEstimator, SpeedMonitor)
from composer.core import Algorithm, Callback, Evaluator
from composer.datasets.in_context_learning_evaluation import \
get_icl_task_dataloader
from composer.loggers import (InMemoryLogger, LoggerDestination, MLFlowLogger,
TensorboardLogger, WandBLogger)
from composer.optim import DecoupledAdamW
from composer.optim.scheduler import (ComposerScheduler,
ConstantWithWarmupScheduler,
CosineAnnealingWithWarmupScheduler,
LinearWithWarmupScheduler)
from composer.utils import dist
from omegaconf import DictConfig, ListConfig
from omegaconf import OmegaConf as om
from torch.optim.optimizer import Optimizer
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from llmfoundry.callbacks import (EvalGauntlet, FDiffMetrics, GlobalLRScaling,
HuggingFaceCheckpointer, LayerFreezing,
MonolithicCheckpointSaver,
ScheduledGarbageCollector)
from llmfoundry.optim import (DecoupledAdaLRLion, DecoupledClipLion,
DecoupledLionW, DecoupledLionW_8bit)
from llmfoundry.optim.scheduler import InverseSquareRootWithWarmupScheduler
from llmfoundry.tokenizers.tiktoken import TiktokenTokenizerWrapper
log = logging.getLogger(__name__)
def build_icl_data_and_gauntlet(
icl_tasks_config: Union[str, ListConfig],
eval_gauntlet_config: Optional[Union[str, DictConfig]],
tokenizer: PreTrainedTokenizerBase,
device_eval_batch_size: int,
icl_seq_len: int,
icl_subset_num_batches: Optional[int] = None
) -> Tuple[List[Evaluator], List[str], Optional[EvalGauntlet]]:
icl_evaluators, logger_keys = build_icl_evaluators(
icl_tasks_config,
tokenizer,
icl_seq_len,
device_eval_batch_size,
icl_subset_num_batches=icl_subset_num_batches)
eval_gauntlet_cb = None
if eval_gauntlet_config is not None:
if isinstance(eval_gauntlet_config, str):
with open(eval_gauntlet_config, 'r') as icl_f:
eval_gauntlet_cfg = om.load(icl_f)
eval_gauntlet = eval_gauntlet_cfg.eval_gauntlet
elif isinstance(eval_gauntlet_config, DictConfig): # pyright: ignore
eval_gauntlet = eval_gauntlet_config
else:
raise ValueError(
f'Got invalid type for eval_gauntlet_config: {type(eval_gauntlet_config)}'
)
eval_gauntlet.logger_keys = logger_keys
eval_gauntlet.benchmark_sizes = {
e.label: e.dataloader.num_samples for e in icl_evaluators
}
eval_gauntlet_cb = EvalGauntlet(**eval_gauntlet)
return icl_evaluators, logger_keys, eval_gauntlet_cb
def build_callback(name: str, kwargs: Dict[str, Any]) -> Callback:
if name == 'lr_monitor':
return LRMonitor()
elif name == 'memory_monitor':
return MemoryMonitor()
elif name == 'speed_monitor':
return SpeedMonitor(window_size=kwargs.get('window_size', 1),
gpu_flops_available=kwargs.get(
'gpu_flops_available', None))
elif name == 'fdiff':
return FDiffMetrics(**kwargs)
elif name == 'runtime_estimator':
return RuntimeEstimator()
elif name == 'optimizer_monitor':
return OptimizerMonitor(log_optimizer_metrics=kwargs.get(
'log_optimizer_metrics', True),)
elif name == 'generate_callback':
prompts = kwargs.pop('prompts')
interval = kwargs.pop('interval', None)
# Generate callback used to be batch_log_interval, so this is for backwards compatibility
if interval is None:
batch_log_interval: str = kwargs.pop('batch_log_interval', '')
if batch_log_interval:
interval = f'{batch_log_interval}ba'
warnings.warn(
('generate_callback.batch_log_interval is deprecated and will be removed in a future release.'
f'Please use interval: {interval}'),
DeprecationWarning,
)
else:
raise KeyError(
'"interval" must be specified with generate callback')
return Generate(prompts=list(prompts), interval=interval, **kwargs)
elif name == 'global_lr_scaling':
return GlobalLRScaling(**kwargs)
elif name == 'layer_freezing':
return LayerFreezing(**kwargs)
elif name == 'mono_ckpt_saver':
return MonolithicCheckpointSaver(**kwargs)
elif name == 'scheduled_gc':
return ScheduledGarbageCollector(**kwargs)
elif name == 'early_stopper':
return EarlyStopper(**kwargs)
elif name == 'hf_checkpointer':
return HuggingFaceCheckpointer(**kwargs)
else:
raise ValueError(f'Not sure how to build callback: {name}')
def build_logger(name: str, kwargs: Dict[str, Any]) -> LoggerDestination:
if name == 'wandb':
return WandBLogger(**kwargs)
elif name == 'tensorboard':
return TensorboardLogger(**kwargs)
elif name == 'in_memory_logger':
return InMemoryLogger(**kwargs)
elif name == 'mlflow':
return MLFlowLogger(**kwargs)
elif name == 'inmemory':
return InMemoryLogger(**kwargs)
else:
raise ValueError(f'Not sure how to build logger: {name}')
def build_algorithm(name: str, kwargs: Dict[str, Any]) -> Algorithm:
if name == 'gradient_clipping':
return algorithms.GradientClipping(**kwargs)
elif name == 'alibi':
return algorithms.Alibi(**kwargs)
elif name == 'fused_layernorm':
return algorithms.FusedLayerNorm(**kwargs)
elif name == 'gated_linear_units':
return algorithms.GatedLinearUnits(**kwargs)
elif name == 'low_precision_layernorm':
return algorithms.LowPrecisionLayerNorm(**kwargs)
else:
raise ValueError(f'Not sure how to build algorithm: {name}')
def build_optimizer(model: torch.nn.Module, name: str,
optimizer_config: Dict[str, Any]) -> Optimizer:
if name == 'decoupled_adamw':
return DecoupledAdamW(model.parameters(), **optimizer_config)
elif name == 'decoupled_lionw':
return DecoupledLionW(model.parameters(), **optimizer_config)
elif name == 'clip_lion':
return DecoupledClipLion(model.parameters(), **optimizer_config)
elif name == 'adalr_lion':
return DecoupledAdaLRLion(model.parameters(), **optimizer_config)
elif name == 'decoupled_lionw_8b':
return DecoupledLionW_8bit(model.parameters(), **optimizer_config)
else:
raise ValueError(f'Not sure how to build optimizer: {name}')
def build_scheduler(name: str,
scheduler_config: Dict[str, Any]) -> ComposerScheduler:
if name == 'constant_with_warmup':
return ConstantWithWarmupScheduler(**scheduler_config)
elif name == 'cosine_with_warmup':
return CosineAnnealingWithWarmupScheduler(**scheduler_config)
elif name == 'inv_sqrt_with_warmup':
return InverseSquareRootWithWarmupScheduler(**scheduler_config)
elif name == 'linear_decay_with_warmup':
return LinearWithWarmupScheduler(**scheduler_config)
else:
raise ValueError(f'Not sure how to build scheduler: {name}')
def build_tokenizer(
tokenizer_name: str,
tokenizer_kwargs: Dict[str, Any]) -> PreTrainedTokenizerBase:
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
if tokenizer_name.startswith('tiktoken'):
tokenizer = TiktokenTokenizerWrapper(**tokenizer_kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name,
**tokenizer_kwargs)
# HuggingFace does not respect the model_max_length kwarg, and overrides it with
# min(kwargs['model_max_length'], original_config['model_max_length']), so we
# explicitly set it here
tokenizer.model_max_length = tokenizer_kwargs.get(
'model_max_length',
int(1e30),
)
return tokenizer
def build_icl_evaluators(
icl_tasks: Union[str, ListConfig],
tokenizer: PreTrainedTokenizerBase,
default_max_seq_len: int,
default_batch_size: int,
destination_dir: Optional[str] = None,
icl_subset_num_batches: Optional[int] = None,
) -> Tuple[List[Evaluator], List[str]]:
if destination_dir is None:
destination_dir = os.getcwd()
evaluators = []
logger_keys = []
icl_tasks_list = None
if isinstance(icl_tasks, str):
log.info(f'Extracting ICL task config from path: {icl_tasks}')
with open(icl_tasks, 'r') as icl_f:
icl_task_cfg = om.load(icl_f)
icl_tasks_list = icl_task_cfg.icl_tasks
else:
icl_tasks_list = icl_tasks
def _validate_cfg(icl_cfg: DictConfig):
assert 'label' in icl_cfg
assert 'dataset_uri' in icl_cfg and icl_cfg.dataset_uri is not None
assert 'icl_task_type' in icl_cfg
assert 'num_fewshot' in icl_cfg
if 'metric_names' not in icl_cfg:
if icl_cfg.icl_task_type == 'language_modeling':
icl_cfg.metric_names = ['InContextLearningLMAccuracy']
elif icl_cfg.icl_task_type == 'multiple_choice':
icl_cfg.metric_names = [
'InContextLearningMultipleChoiceAccuracy'
]
elif icl_cfg.icl_task_type == 'schema':
icl_cfg.metric_names = [
'InContextLearningMultipleChoiceAccuracy'
]
elif icl_cfg.icl_task_type == 'question_answering':
icl_cfg.metric_names = ['InContextLearningQAAccuracy']
elif icl_cfg.icl_task_type == 'code_evaluation':
icl_cfg.metric_names = ['InContextLearningCodeEvalAccuracy']
else:
raise ValueError(
f'No metric_names defined, unable to build default metrics for icl_task_type={icl_cfg.icl_task_type}.'
)
if 'prompt_string' not in icl_cfg:
icl_cfg.prompt_string = ''
if 'example_delimiter' not in icl_cfg:
icl_cfg.example_delimiter = '\n'
if 'continuation_delimiter' not in icl_cfg:
icl_cfg.continuation_delimiter = ' '
if 'max_seq_len' not in icl_cfg:
icl_cfg.max_seq_len = default_max_seq_len
if 'batch_size' not in icl_cfg:
icl_cfg.batch_size = default_batch_size
if 'pass_at_k' not in icl_cfg:
icl_cfg.pass_at_k = 1
if 'num_beams' not in icl_cfg:
icl_cfg.num_beams = 20
for icl_cfg in icl_tasks_list:
assert isinstance(icl_cfg, DictConfig)
_validate_cfg(icl_cfg)
for num_fewshot in list(icl_cfg.num_fewshot):
if tokenizer.pad_token_id is None:
# Current workaround to support GPT2 tokenizer with `pad_token_id = None`
pad_tok_id = tokenizer.eos_token_id
else:
pad_tok_id = tokenizer.pad_token_id
label = f'{icl_cfg.label}/{num_fewshot}-shot'
metric_names = list(icl_cfg.metric_names)
# TODO: fix Composer bug when copying local paths and destination exists
destination_path = f'{destination_dir}/{icl_cfg.label}-{num_fewshot}.jsonl'
if dist.get_local_rank() == 0 and os.path.exists(destination_path):
os.remove(destination_path)
dist.barrier()
dataloaders = get_icl_task_dataloader(
icl_cfg.icl_task_type,
icl_cfg.dataset_uri,
tokenizer,
batch_size=icl_cfg.batch_size,
max_seq_len=icl_cfg.max_seq_len,
pad_tok_id=pad_tok_id,
num_fewshot=num_fewshot,
prompt_string=icl_cfg.prompt_string,
example_delimiter=icl_cfg.example_delimiter,
continuation_delimiter=icl_cfg.continuation_delimiter,
destination_path=destination_path,
pass_at_k=icl_cfg.pass_at_k,
generations_per_sample=icl_cfg.num_beams,
has_categories=icl_cfg.get('has_categories', False),
)
if hasattr(
icl_cfg,
'has_categories') and icl_cfg.has_categories and isinstance(
dataloaders, dict):
for category in dataloaders.keys():
logger_keys.extend([
f'metrics/{label}/{category}/{m}' for m in metric_names
])
evaluators.append(
Evaluator(label=f'{label}/{category}',
dataloader=dataloaders[category],
metric_names=metric_names),)
else:
logger_keys.extend(
[f'metrics/{label}/{m}' for m in metric_names])
evaluators.append(
Evaluator(label=label,
dataloader=dataloaders,
metric_names=metric_names,
subset_num_batches=icl_subset_num_batches))
return evaluators, logger_keys
|