File size: 15,788 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import logging
import math
import os
import tempfile
from argparse import ArgumentParser, Namespace
from concurrent.futures import ProcessPoolExecutor
from glob import glob
from typing import Iterable, List, Tuple, cast
import psutil
from composer.utils import (ObjectStore, maybe_create_object_store_from_uri,
parse_uri)
from streaming import MDSWriter
from tqdm import tqdm
from transformers import AutoTokenizer
from llmfoundry.data import ConcatTokensDataset
from llmfoundry.utils.data_prep_utils import (DownloadingIterable,
merge_shard_groups)
log = logging.getLogger(__name__)
DONE_FILENAME = '.text_to_mds_conversion_done'
def parse_args() -> Namespace:
"""Parse commandline arguments."""
parser = ArgumentParser(
description=
'Convert text files into MDS format, optionally concatenating and tokenizing',
)
parser.add_argument(
'--output_folder',
type=str,
required=True,
help='The folder to write output to',
)
parser.add_argument(
'--input_folder',
type=str,
required=True,
help='The folder with text files to convert to mds',
)
parser.add_argument(
'--compression',
type=str,
default='zstd',
help='The compression algorithm to use for MDS writing',
)
parser.add_argument(
'--concat_tokens',
type=int,
help='Convert text to tokens and concatenate up to this many tokens',
)
parser.add_argument(
'--tokenizer',
type=str,
help='The name of the tokenizer to use',
)
parser.add_argument(
'--bos_text',
type=str,
required=False,
default=None,
help=
'The text to prepend to each example to separate concatenated examples',
)
parser.add_argument(
'--eos_text',
type=str,
required=False,
default=None,
help=
'The text to append to each example to separate concatenated examples',
)
parser.add_argument(
'--no_wrap',
default=False,
action='store_true',
help=
'Whether to let text examples wrap across multiple training examples',
)
parser.add_argument(
'--processes',
type=int,
required=False,
default=min(max(psutil.cpu_count() - 2, 1), 32),
help=
'The number of processes to use to download and convert the dataset',
)
parser.add_argument(
'--reprocess',
type=bool,
required=False,
default=False,
help='If true, reprocess the input_folder to mds format. Otherwise, ' +
'only reprocess upon changes to the input folder or dataset creation parameters.',
)
parsed = parser.parse_args()
# Make sure we have needed concat options
if (parsed.concat_tokens is not None and
isinstance(parsed.concat_tokens, int) and parsed.tokenizer is None):
parser.error(
'When setting --concat_tokens, you must specify a --tokenizer')
# now that we have validated them, change BOS/EOS to strings
if parsed.bos_text is None:
parsed.bos_text = ''
if parsed.eos_text is None:
parsed.eos_text = ''
return parsed
def get_object_names(input_folder: str) -> List[str]:
"""Get object names from a local or remote folder.
Args:
input_folder (str): local or remote folder path.
"""
object_store = maybe_create_object_store_from_uri(input_folder)
if object_store is not None:
_, _, folder_prefix = parse_uri(input_folder)
names = [
name for name in object_store.list_objects(folder_prefix)
if name.endswith('.txt')
]
else:
# input_folder is a local folder
names = [
text_file for dirpath, _, _ in os.walk(input_folder)
for text_file in glob(os.path.join(dirpath, '*.txt'))
]
# return names, sizes
log.info(f'Found {len(names)} text files at {input_folder}')
return names
def get_task_args(
object_names: List[str],
output_root: str,
input_folder: str,
n_groups: int,
tokenizer_name: str,
concat_tokens: int,
eos_text: str,
bos_text: str,
no_wrap: bool,
compression: str,
) -> Iterable:
"""Get download_and_convert arguments split across n_groups.
Each group handles a portion of object_names.
Args:
object_names (List[str]): Names of objects to process
output_root (str): Folder to write MDS shards to
input_folder (str): Folder of text files to process
n_groups (int): Number of groups to split the object names into
tokenizer_name (str): Name of tokenizer to use
concat_tokens (int): Concantenate up to this many tokens
eos_text (str): Textend to append to each example to separate concatenated samples
bos_text (str): Text to prepend to each example to separate concatenated samples
no_wrap: (bool): Whether to let text examples wrap across multiple training examples
compression (str): The compression algorithm to use for MDS writing
"""
num_objects = len(object_names)
objs_per_group = math.ceil(num_objects / n_groups)
for group, i in enumerate(range(0, num_objects, objs_per_group)):
output_subdir = os.path.join(output_root, str(group))
yield (
object_names[i:min(i + objs_per_group, num_objects)],
output_subdir,
input_folder,
tokenizer_name,
concat_tokens,
eos_text,
bos_text,
no_wrap,
compression,
)
def download_and_convert_starargs(args: Tuple):
"""Helper function to call download_and_convert with star args.
This helps us use download_and_convert with mutiprocessing.
"""
return download_and_convert(*args)
def download_and_convert(
file_names: List[str],
output_folder: str,
input_folder: str,
tokenizer_name: str,
concat_tokens: int,
eos_text: str,
bos_text: str,
no_wrap: bool,
compression: str,
):
"""Downloads and converts text fies to MDS format.
Args:
file_names (List[str]): Files to process
output_folder (str): Folder to write MDS shards to
input_folder (str): Folder of text files to process
tokenizer_name (str): Name of tokenizer to use
concat_tokens (int): Concantenate up to this many tokens
eos_text (str): Textend to append to each example to separate concatenated samples
bos_text (str): Text to prepend to each example to separate concatenated samples
no_wrap: (bool): Whether to let text examples wrap across multiple training examples
compression (str): The compression algorithm to use for MDS writing
"""
object_store = maybe_create_object_store_from_uri(input_folder)
# Download file_names
with tempfile.TemporaryDirectory() as tmp_dir:
downloading_iter = DownloadingIterable(object_names=file_names,
output_folder=tmp_dir,
object_store=object_store)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
tokenizer.model_max_length = 5000000000 # Hack to prevent warnings from HuggingFace
# Use the ConcatTokensDataset from LLM-foundry to concatenate sequences of tokens up
# to the maximum sequence length
dataset = ConcatTokensDataset(
hf_dataset=downloading_iter,
max_length=concat_tokens,
tokenizer=tokenizer,
eos_text=eos_text,
bos_text=bos_text,
no_wrap=no_wrap,
)
columns = {'tokens': 'bytes'}
log.info('Converting to MDS format...')
with MDSWriter(out=output_folder,
columns=columns,
compression=compression) as out:
for sample in tqdm(dataset):
out.write(sample)
def is_remote_path(path: str) -> bool:
"""Checks whether a path is a remote path.
Args:
path (str): path to check
"""
backend, bucket, _ = parse_uri(path)
return backend != '' and bucket != ''
def is_already_processed(output_root: str, args_str: str,
object_names: List[str]) -> bool:
"""Determines whether a group of text files has already been processed.
Checks the done fie at output root to determine this.
Args:
output_root (str): Output folder where a done file may exist
args_str (str): String representation of the arguments
object_names (List[str]): Names of objects to convert to MDS format
"""
# Retrieve the done file contents
output_object_store = maybe_create_object_store_from_uri(output_root)
if output_object_store is not None:
# Download and read the done file from the remote object store
_, _, output_folder_prefix = parse_uri(output_root)
try:
with tempfile.TemporaryDirectory() as tmp_dir:
done_file = os.path.join(tmp_dir, DONE_FILENAME)
output_object_store.download_object(
os.path.join(output_folder_prefix, DONE_FILENAME),
done_file)
with open(done_file) as df:
done_file_contents = df.read().splitlines()
except FileNotFoundError:
return False
else:
# Read the local done file
done_file = os.path.join(output_root, DONE_FILENAME)
if not os.path.isfile(done_file):
return False
with open(done_file) as df:
done_file_contents = df.read().splitlines()
# Compare the arguments
prev_args_str = done_file_contents[0]
if prev_args_str != args_str:
return False
# Compare file names
prev_names = done_file_contents[1:]
if len(prev_names) != len(object_names):
return False
for idx, prev_name in enumerate(prev_names):
if object_names[idx] != prev_name:
return False
return True
def write_done_file(folder: str, args_str: str, object_names: List[str]):
"""Write a file to signify completion.
This the done file includes the arguments to processing and
a list of objects that were processed.
Args:
folder (str): Folder to write the done file to
args_str (str): String representation of arguments
object_names (List[str]): List of objects to convert to MDS format
"""
with open(os.path.join(folder, DONE_FILENAME), 'w') as done_file:
done_file.write('\n'.join([args_str] + object_names) + '\n')
def convert_text_to_mds(
tokenizer_name: str,
output_folder: str,
input_folder: str,
concat_tokens: int,
eos_text: str,
bos_text: str,
no_wrap: bool,
compression: str,
processes: int,
args_str: str,
reprocess: bool,
):
"""Convert a folder of text files to MDS format.
Args:
tokenizer_name (str): Name of tokenizer to use
output_folder (str): Folder to write MDS shards to
input_folder (str): Folder of text files to process
concat_tokens (int): Concantenate up to this many tokens
eos_text (str): Textend to append to each example to separate concatenated samples
bos_text (str): Text to prepend to each example to separate concatenated samples
no_wrap: (bool): Whether to let text examples wrap across multiple training examples
compression (str): The compression algorithm to use for MDS writing
processes (int): The number of processes to use.
args_str (str): String representation of the arguments
reprocess (bool): Whether to always reprocess the given folder of text files
"""
is_remote_output = is_remote_path(output_folder)
object_names = get_object_names(input_folder)
if len(object_names) == 0:
raise ValueError(f'No text files were found at {input_folder}.')
# Check if the text files in the bucket have already been processed.
if not reprocess and is_already_processed(output_folder, args_str,
object_names):
log.info(
f'Input folder {input_folder} is already processed at {output_folder} and '
+
'reprocess is set to False. Set reprocess to True if you would like to force reprocessing.'
)
return
# Use a temporary local directory if the output is remote and there are more than 1 processes
local_output_folder = tempfile.TemporaryDirectory(
).name if is_remote_output else output_folder
if processes > 1:
# Download and convert the text files in parallel
args = get_task_args(object_names, local_output_folder, input_folder,
processes, tokenizer_name, concat_tokens, eos_text,
bos_text, no_wrap, compression)
with ProcessPoolExecutor(max_workers=processes) as executor:
list(executor.map(download_and_convert_starargs, args))
# Merge the mds shards from each of the processes into a single folder
merge_shard_groups(local_output_folder)
else:
download_and_convert(object_names, local_output_folder, input_folder,
tokenizer_name, concat_tokens, eos_text, bos_text,
no_wrap, compression)
# Write a done file with the args and object names
write_done_file(local_output_folder, args_str, object_names)
if is_remote_output:
# Upload the local output to the remote location
output_object_store = cast(
ObjectStore, maybe_create_object_store_from_uri(output_folder))
_, _, output_folder_prefix = parse_uri(output_folder)
files_to_upload = os.listdir(local_output_folder)
for file in files_to_upload:
assert not os.path.isdir(file)
remote_path = os.path.join(output_folder_prefix, file)
output_object_store.upload_object(
remote_path, os.path.join(local_output_folder, file))
def _args_str(original_args: Namespace) -> str:
"""Create a string from the args to determine whether to reprocess.
Args:
original_args (Namespace): Arguments to main function.
"""
# Take the arguments that influence the final result.
# reprocess and max_mds_writer_workers are not taken.
args = Namespace(
tokenizer_name=original_args.tokenizer,
output_folder=original_args.output_folder,
input_folder=original_args.input_folder,
concat_tokens=original_args.concat_tokens,
eos_text=original_args.eos_text,
bos_text=original_args.bos_text,
no_wrap=original_args.no_wrap,
compression=original_args.compression,
processes=original_args.processes,
)
return str(args)
if __name__ == '__main__':
args = parse_args()
convert_text_to_mds(tokenizer_name=args.tokenizer,
output_folder=args.output_folder,
input_folder=args.input_folder,
concat_tokens=args.concat_tokens,
eos_text=args.eos_text,
bos_text=args.bos_text,
no_wrap=args.no_wrap,
compression=args.compression,
processes=args.processes,
reprocess=args.reprocess,
args_str=_args_str(args))
|