File size: 8,571 Bytes
de4ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import os
import tempfile
from argparse import ArgumentParser, Namespace
from collections import OrderedDict
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, Optional, Union
import torch
from composer.utils import (get_file, maybe_create_object_store_from_uri,
parse_uri, safe_torch_load)
from llmfoundry.models.mpt.configuration_mpt import (attn_config_defaults,
init_config_defaults)
# define state dict key changes
# old_state_dict_key: new_state_dict_key
v004_to_llmfoundry_key_conversion = OrderedDict([
('.ln_', '.norm_'),
('.mlp_up.', '.up_proj.'),
('.mlp_down.', '.down_proj.'),
('.mlp.', '.ffn.'),
])
def convert_examples_ckpt_state_dict(
state_dict: Dict[str, Any],
conversion_dict: Dict[str, str],
) -> Dict[str, Any]:
# map old keys to new keys
key_mappings = OrderedDict()
for k in state_dict.keys():
key_mappings[k] = k
for k, v in key_mappings.items():
_v = v
for old, new in conversion_dict.items():
_v = _v.replace(old, new)
key_mappings[k] = _v
# generate state dict with new keys
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if key_mappings[k] != k:
print(f'Updating state dict key: {k} -> {key_mappings[k]}')
new_state_dict[key_mappings[k]] = v
return new_state_dict
def convert_examples_ckpt(
checkpoint_path: Union[Path, str],
output_path: Union[Path, str],
conversion_dict: Dict[str, str],
local_ckpt_path: Optional[Union[Path, str]] = None,
) -> None:
"""Convert a ckpt created in examples repo to an llmfoundry compat ckpt.
Args:
checkpoint_path (Union[Path, str]): Path to the composer checkpoint, can
be a local path, or a remote path beginning with ``s3://``, or
another backend supported by
:meth:`composer.utils.maybe_create_object_store_from_uri`.
output_path (Union[Path, str]): Path to the folder to write the output to.
Can be a local path, or a remote path beginning with ``s3://``, or
another backend supported by
:meth:`composer.utils.maybe_create_object_store_from_uri`.
conversion_dict (Dict): defines state dict key changes
local_ckpt_path (Optional[Union[Path, str]], optional): If specified,
where to save the checkpoint file to locally. If the input
``checkpoint_path`` is already a local path, this will be a
symlink. Defaults to None, which will use a temporary file.
"""
# default local path to a tempfile if path is not provided
if local_ckpt_path is None:
tmp_dir = tempfile.TemporaryDirectory()
local_ckpt_path = Path(tmp_dir.name) / 'local-composer-checkpoint.pt'
# create object store if output_path
_, _, local_folder_path = parse_uri(str(output_path))
object_store = maybe_create_object_store_from_uri(str(output_path))
if object_store is not None:
local_output_path = tempfile.TemporaryDirectory().name
else:
local_output_path = local_folder_path
# create folder
os.makedirs(local_output_path)
# download the checkpoint file
print(f'Downloading checkpoint from {checkpoint_path} -> {local_ckpt_path}')
get_file(str(checkpoint_path), str(local_ckpt_path))
# Load the Composer checkpoint state dict
print('Loading checkpoint into CPU RAM...')
composer_state_dict = safe_torch_load(local_ckpt_path)
# Convert examples model state dict to llm-foundry
model_state = convert_examples_ckpt_state_dict(
composer_state_dict['state']['model'],
conversion_dict,
)
composer_state_dict['state']['model'] = model_state
# Convert HF config in state dict
if 'huggingface' in composer_state_dict['state']['integrations']:
hf_config = composer_state_dict['state']['integrations']['huggingface'][
'model']['config']['content']
if hf_config['model_type'] == 'mosaic_gpt':
hf_config['model_type'] = 'mpt'
if 'mlp_ratio' in hf_config:
hf_config['expansion_ratio'] = hf_config.pop('mlp_ratio')
# Convert attention config
if 'attn_config' not in hf_config:
hf_config['attn_config'] = deepcopy(attn_config_defaults)
hf_config['attn_config']['attn_type'] = 'multihead_attention'
hf_config['attn_config']['qk_ln'] = hf_config.pop(
'attn_qk_ln', attn_config_defaults['qk_ln'])
hf_config['attn_config']['clip_qkv'] = hf_config.pop(
'attn_clip_qkv', attn_config_defaults['clip_qkv'])
for k in [
'attn_pdrop', 'attn_impl', 'softmax_scale', 'prefix_lm',
'attn_uses_sequence_id', 'alibi', 'alibi_bias_max'
]:
if k in hf_config:
hf_config['attn_config'][k] = hf_config.pop(k)
# convert norm config
if 'low_precision_layernorm' in hf_config:
if hf_config.pop('low_precision_layernorm'):
hf_config['norm_type'] = 'low_precision_layernorm'
else:
hf_config['norm_type'] = 'layernorm'
# Convert init config
if 'init_config' not in hf_config:
hf_config['init_config'] = deepcopy(init_config_defaults)
hf_config['init_config']['name'] = hf_config.pop('param_init_fn')
for k in [
'fan_mode', 'init_nonlinearity', 'init_gain', 'init_std',
'init_div_is_residual', 'emb_init_std',
'emb_init_uniform_lim'
]:
if k in hf_config:
hf_config['init_config'][k] = hf_config.pop(k)
print(f'Setting hf_config: {hf_config}')
composer_state_dict['state']['integrations']['huggingface']['model'][
'config']['content'] = hf_config
# Convert optimizer state dict
if 'optimizers' in composer_state_dict['state'].keys():
print(f'Updating optimizer state dict')
for opt in composer_state_dict['state']['optimizers'].keys():
opt_state = convert_examples_ckpt_state_dict(
composer_state_dict['state']['optimizers'][opt]['state'],
conversion_dict,
)
composer_state_dict['state']['optimizers'][opt]['state'] = opt_state
for pg_idx in range(
len(composer_state_dict['state']['optimizers'][opt]
['param_groups'])):
for param_idx in range(
len(composer_state_dict['state']['optimizers'][opt]
['param_groups'][pg_idx]['params'])):
param_name = composer_state_dict['state']['optimizers'][
opt]['param_groups'][pg_idx]['params'][param_idx]
for old, new in conversion_dict.items():
param_name = param_name.replace(old, new)
composer_state_dict['state']['optimizers'][opt][
'param_groups'][pg_idx]['params'][
param_idx] = param_name
# Save weights
file_path = str(
Path(local_output_path) / str(checkpoint_path).split('/')[-1])
print(f'Writing converted output to {file_path}')
torch.save(composer_state_dict, file_path)
if object_store is not None:
remote_file_path = os.path.join(local_folder_path,
str(checkpoint_path).split('/')[-1])
print(f'Uploading from {file_path} to {remote_file_path}')
object_store.upload_object(remote_file_path, file_path)
def main(args: Namespace) -> None:
convert_examples_ckpt(
checkpoint_path=args.checkpoint_path,
output_path=args.output_path,
conversion_dict=v004_to_llmfoundry_key_conversion,
local_ckpt_path=args.local_ckpt_path,
)
if __name__ == '__main__':
parser = ArgumentParser(
description=
'Convert ckpt created with the examples repo into one usable by llmfoundry.'
)
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
parser.add_argument('--local_ckpt_path', type=str, default=None)
args = parser.parse_args()
main(args)
|