File size: 26,702 Bytes
de4ade4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import copy
import logging
import os
import sys
import warnings
from typing import Any, Dict, List, Optional, Union

import torch
from composer import Trainer
from composer.core import Evaluator
from composer.core.callback import Callback
from composer.utils import dist, get_device, reproducibility
from omegaconf import DictConfig, ListConfig
from omegaconf import OmegaConf as om
from transformers import PreTrainedTokenizerBase

from llmfoundry import (COMPOSER_MODEL_REGISTRY, ComposerHFCausalLM,
                        MPTForCausalLM, build_finetuning_dataloader,
                        build_text_denoising_dataloader)
from llmfoundry.data.text_data import build_text_dataloader
from llmfoundry.utils.builders import (build_algorithm, build_callback,
                                       build_icl_data_and_gauntlet,
                                       build_logger, build_optimizer,
                                       build_scheduler, build_tokenizer)
from llmfoundry.utils.config_utils import (log_config, pop_config,
                                           process_init_device,
                                           update_batch_size_info)


def validate_config(cfg: DictConfig):
    """Validates compatible model and dataloader selection."""
    loaders = [cfg.train_loader]
    if 'eval_loader' in cfg:
        eval_loader = cfg.eval_loader
        if isinstance(eval_loader, ListConfig):
            for loader in eval_loader:
                if loader.label is None:
                    raise ValueError(
                        'When specifying multiple evaluation datasets, each one must include the \
                            `label` attribute.')
                loaders.append(loader)
        else:
            loaders.append(eval_loader)
    for loader in loaders:
        if loader.name == 'text':
            if cfg.model.name in ['hf_prefix_lm', 'hf_t5']:
                raise ValueError(
                    f'Model type "{cfg.model.name}" is not supported when using the "text " ' +\
                    f'dataloader. Please use the "text_denoising" dataloader to pre-train that model type.')
        elif loader.name == 'text_denoising':
            if cfg.model.name == 'hf_causal_lm':
                raise ValueError(
                    f'Model type "{cfg.model.name}" is not supported when using the "text_denoising" ' +\
                    f'dataloader. Please use the "text" dataloader to pre-train that model type.')
            if loader.mixture_of_denoisers.decoder_only_format and cfg.model.name == 'hf_t5':
                warnings.warn(
                    'Model type "hf_t5" requires `decoder_only_format` to be ``False``. ' +\
                    'Overriding `decoder_only_format` from ``True`` to ``False``.')
                loader.mixture_of_denoisers.decoder_only_format = False
            if (not loader.mixture_of_denoisers.decoder_only_format
               ) and cfg.model.name == 'hf_prefix_lm':
                warnings.warn(
                    'Model type "hf_prefix_lm" requires `decoder_only_format` to be ``True``. ' +\
                    'Overriding `decoder_only_format` from ``False`` to ``True``.')
                loader.mixture_of_denoisers.decoder_only_format = True

    if 'icl_tasks' in cfg:
        if cfg.model.name == 'hf_t5':
            raise ValueError(
                'ICL evaluation does not currently support Encoder-Decoder models, such as "hf_t5".'
            )

    if (cfg.model.get('fc_type', 'torch') != 'te' and 'te' not in cfg.model.get(
            'ffn_config', {}).get('ffn_type', 'mptmlp') and
            'fp8' in cfg.precision):
        warnings.warn(
            "fp8 only supported for te.Linear layers. Either set `cfg.model.fc_typ='te'` or "
            +
            "`cfg.model.ffn_config.ffn_type='te_ln_mlp'` to enable layers using fp8 precision."
        )

    if (cfg.model.get('fc_type', 'torch') == 'te' or
            'te' in cfg.model.get('ffn_config', {}).get('ffn_type', 'mptmlp')):
        fsdp_config = cfg.get('fsdp_config', None)
        act_ckpt = fsdp_config.get('activation_checkpointing', False)
        act_ckpt_reentrant = fsdp_config.get(
            'activation_checkpointing_reentrant', True)
        if fsdp_config is not None and act_ckpt == True and act_ckpt_reentrant == False:
            warnings.warn(
                '`te.Linear` layers do not support activation_checkpointing with '
                + '`activation_checkpointing_reentrant = False`. ' +
                'Setting cfg.fsdp_config.activation_checkpointing_reentrant=True.'
            )
            cfg.fsdp_config.activation_checkpointing_reentrant = True

    if 'te' in cfg.model.get('ffn_config', {}).get('ffn_type', 'mptmlp'):
        warnings.warn(
            '`te.LayerNormMLP` requires has issues with torch._dynamo. ' +
            'Setting `torch._dynamo.config.suppress_errors = True` and falling back to eager.'
        )
        torch._dynamo.config.suppress_errors = True  # type: ignore (third-party)

    if cfg.model.get('load_in_8bit', False):
        raise ValueError(
            '`load_in_8bit` is only supported for evaluation rather than training.'
        )


def build_composer_model(model_cfg: DictConfig,
                         tokenizer: PreTrainedTokenizerBase):
    warnings.filterwarnings(
        action='ignore',
        message='Torchmetrics v0.9 introduced a new argument class property')
    if model_cfg.name not in COMPOSER_MODEL_REGISTRY:
        raise ValueError(
            f'Not sure how to build model with name={model_cfg.name}')
    return COMPOSER_MODEL_REGISTRY[model_cfg.name](model_cfg, tokenizer)


def build_composer_peft_model(
        pretrained_model_name_or_path: str, lora_args: Dict[str, Any],
        tokenizer: PreTrainedTokenizerBase) -> ComposerHFCausalLM:
    try:
        from peft import LoraConfig, get_peft_model
    except ImportError as e:
        raise ImportError(
            'Error importing from peft. Please verify that peft and peft utils '
            +
            'are installed by running `pip install -e .[peft]` from `llm-foundry/`. '
            + f'Error encountered: {e}')

    # 1) loads a hf model, 2) adds peft modules, 3) wraps it in a ComposerHFCausalLM.
    print('Building Lora config...')
    lora_cfg = LoraConfig(**lora_args)

    print('Building model from HuggingFace checkpoint...')
    model = MPTForCausalLM.from_pretrained(pretrained_model_name_or_path,
                                           trust_remote_code=True)
    print('Model built!')

    print('Adding Lora modules...')
    model = get_peft_model(model, lora_cfg)
    print('Lora modules added!')

    model = ComposerHFCausalLM(model, tokenizer)

    return model


def print_trainable_parameters(model: torch.nn.Module) -> None:
    # Prints the number of trainable parameters in the model.
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f'trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}'
    )


def build_dataloader(cfg: DictConfig, tokenizer: PreTrainedTokenizerBase,
                     device_batch_size: int):
    if cfg.name == 'text':
        return build_text_dataloader(
            cfg,
            tokenizer,
            device_batch_size,
        )
    elif cfg.name == 'text_denoising':
        return build_text_denoising_dataloader(
            cfg,
            tokenizer,
            device_batch_size,
        )
    elif cfg.name == 'finetuning':
        return build_finetuning_dataloader(
            cfg,
            tokenizer,
            device_batch_size,
        )
    else:
        raise ValueError(f'Not sure how to build dataloader with config: {cfg}')


def main(cfg: DictConfig) -> Trainer:
    # Filter deprecation warning from torch internal usage
    warnings.filterwarnings(
        action='ignore',
        category=UserWarning,
        message=
        'torch.distributed.*_base is a private function and will be deprecated.*'
    )

    # Check for incompatibilities between the model and data loaders
    validate_config(cfg)

    # Resolve all interpolation variables as early as possible
    om.resolve(cfg)

    # Create copy of config for logging
    logged_cfg: DictConfig = copy.deepcopy(cfg)

    # Get max split size mb
    max_split_size_mb: Optional[int] = cfg.pop('max_split_size_mb', None)
    if max_split_size_mb is not None:
        os.environ[
            'PYTORCH_CUDA_ALLOC_CONF'] = f'max_split_size_mb:{max_split_size_mb}'

    # Set seed first
    seed: int = pop_config(cfg, 'seed', must_exist=True)
    reproducibility.seed_all(seed)

    # Initialize pytorch distributed training process groups
    dist_timeout: Union[int, float] = pop_config(cfg,
                                                 'dist_timeout',
                                                 must_exist=False,
                                                 default_value=600.0)
    dist.initialize_dist(get_device(None), timeout=dist_timeout)

    # Get global and device batch size information from distributed/single node setting
    cfg = update_batch_size_info(cfg)
    logged_cfg.update(cfg, merge=True)

    # Mandatory model training configs
    model_config: DictConfig = pop_config(cfg, 'model', must_exist=True)
    tokenizer_config: Dict[str, Any] = pop_config(cfg,
                                                  'tokenizer',
                                                  must_exist=True,
                                                  convert=True)
    optimizer_config: Dict[str, Any] = pop_config(cfg,
                                                  'optimizer',
                                                  must_exist=True,
                                                  convert=True)
    scheduler_config: Dict[str, Any] = pop_config(cfg,
                                                  'scheduler',
                                                  must_exist=True,
                                                  convert=True)
    train_loader_config: DictConfig = pop_config(cfg,
                                                 'train_loader',
                                                 must_exist=True)

    # Optional fsdp data, fine-tuning, and eval configs
    fsdp_config: Optional[Dict[str, Any]] = pop_config(cfg,
                                                       'fsdp_config',
                                                       must_exist=False,
                                                       default_value=None,
                                                       convert=True)
    lora_config: Optional[Dict[str, Any]] = pop_config(cfg,
                                                       'lora',
                                                       must_exist=False,
                                                       default_value=None,
                                                       convert=True)
    eval_loader_config: Optional[Union[DictConfig, ListConfig]] = pop_config(
        cfg, 'eval_loader', must_exist=False, default_value=None)
    icl_tasks_config: Optional[Union[ListConfig,
                                     str]] = pop_config(cfg,
                                                        'icl_tasks',
                                                        must_exist=False,
                                                        default_value=None)
    eval_gauntlet_config: Optional[Union[DictConfig,
                                         str]] = pop_config(cfg,
                                                            'eval_gauntlet',
                                                            must_exist=False,
                                                            default_value=None)
    if eval_gauntlet_config is None:
        eval_gauntlet_config = pop_config(cfg,
                                          'model_gauntlet',
                                          must_exist=False,
                                          default_value=None)
        if eval_gauntlet_config is not None:
            print(
                'Use of the key `model_gauntlet` is deprecated, please use the key `eval_gauntlet`'
            )
    icl_subset_num_batches: Optional[int] = pop_config(cfg,
                                                       'icl_subset_num_batches',
                                                       must_exist=False,
                                                       default_value=None)
    icl_seq_len: Optional[int] = pop_config(cfg,
                                            'icl_seq_len',
                                            must_exist=False,
                                            default_value=None)
    # Optional logging, evaluation and callback configs
    logger_configs: Optional[DictConfig] = pop_config(cfg,
                                                      'loggers',
                                                      must_exist=False,
                                                      default_value=None)
    callback_configs: Optional[DictConfig] = pop_config(cfg,
                                                        'callbacks',
                                                        must_exist=False,
                                                        default_value=None)
    algorithm_configs: Optional[DictConfig] = pop_config(cfg,
                                                         'algorithms',
                                                         must_exist=False,
                                                         default_value=None)

    # Mandatory hyperparameters for training
    device_train_batch_size: int = pop_config(cfg,
                                              'device_train_batch_size',
                                              must_exist=True)
    device_eval_batch_size: int = pop_config(cfg,
                                             'device_eval_batch_size',
                                             must_exist=True)
    max_duration: Union[int, str] = pop_config(cfg,
                                               'max_duration',
                                               must_exist=True)
    eval_interval: Union[int, str] = pop_config(cfg,
                                                'eval_interval',
                                                must_exist=True)
    precision: str = pop_config(cfg, 'precision', must_exist=True)
    max_seq_len: int = pop_config(cfg, 'max_seq_len', must_exist=True)

    # Optional parameters will be set to default values if not specified.
    default_run_name: str = os.environ.get('RUN_NAME', 'llm')
    run_name: str = pop_config(cfg,
                               'run_name',
                               must_exist=False,
                               default_value=default_run_name)
    save_folder: Optional[str] = pop_config(cfg,
                                            'save_folder',
                                            must_exist=False,
                                            default_value=None)
    save_latest_filename: str = pop_config(cfg,
                                           'save_latest_filename',
                                           must_exist=False,
                                           default_value='latest-rank{rank}.pt')
    save_overwrite: bool = pop_config(cfg,
                                      'save_overwrite',
                                      must_exist=False,
                                      default_value=False)
    save_weights_only: bool = pop_config(cfg,
                                         'save_weights_only',
                                         must_exist=False,
                                         default_value=False)
    save_filename: str = pop_config(
        cfg,
        'save_filename',
        must_exist=False,
        default_value='ep{epoch}-ba{batch}-rank{rank}.pt')
    save_interval: Union[str, int] = pop_config(cfg,
                                                'save_interval',
                                                must_exist=False,
                                                default_value='1000ba')
    save_num_checkpoints_to_keep: int = pop_config(
        cfg, 'save_num_checkpoints_to_keep', must_exist=False, default_value=-1)
    progress_bar = pop_config(cfg,
                              'progress_bar',
                              must_exist=False,
                              default_value=False)
    log_to_console: bool = pop_config(cfg,
                                      'log_to_console',
                                      must_exist=False,
                                      default_value=True)
    python_log_level: Optional[str] = pop_config(cfg,
                                                 'python_log_level',
                                                 must_exist=False,
                                                 default_value='debug')
    console_log_interval: Union[int, str] = pop_config(cfg,
                                                       'console_log_interval',
                                                       must_exist=False,
                                                       default_value='1ba')
    device_train_microbatch_size: Union[str, int] = pop_config(
        cfg,
        'device_train_microbatch_size',
        must_exist=False,
        default_value='auto')
    eval_subset_num_batches: int = pop_config(cfg,
                                              'eval_subset_num_batches',
                                              must_exist=False,
                                              default_value=-1)
    eval_first: bool = pop_config(cfg,
                                  'eval_first',
                                  must_exist=False,
                                  default_value=False)
    load_path: str = pop_config(cfg,
                                'load_path',
                                must_exist=False,
                                default_value=None)
    load_weights_only: bool = pop_config(cfg,
                                         'load_weights_only',
                                         must_exist=False,
                                         default_value=False)
    load_ignore_keys: Optional[List[str]] = pop_config(cfg,
                                                       'load_ignore_keys',
                                                       must_exist=False,
                                                       default_value=None)
    # Enable autoresume from model checkpoints if possible
    autoresume_default: bool = False
    if logged_cfg.get('run_name', None) is not None \
        and save_folder is not None \
        and not save_overwrite \
        and not save_weights_only:
        autoresume_default = True

    if cfg.get('autoresume') is None and autoresume_default:
        print('As run_name, save_folder, and save_latest_filename are set, \
                changing autoresume default to True...')

    autoresume: bool = pop_config(cfg,
                                  'autoresume',
                                  must_exist=False,
                                  default_value=autoresume_default)

    # Pop known unused parameters that are used as interpolation variables or
    # created by update_batch_size_info.
    pop_config(cfg, 'data_local', must_exist=False)
    pop_config(cfg, 'data_remote', must_exist=False)
    pop_config(cfg, 'global_seed', must_exist=False)
    pop_config(cfg, 'global_train_batch_size', must_exist=False)
    pop_config(cfg, 'n_gpus', must_exist=False)
    pop_config(cfg, 'device_train_grad_accum', must_exist=False)

    # Warn users for unused parameters
    for key in cfg:
        warnings.warn(
            f'Unused parameter {key} found in cfg. Please check your yaml to ensure this parameter is necessary.'
        )

    # Warn if fsdp is enabled but user only has 1 GPU
    if dist.get_world_size() == 1 and fsdp_config is not None:
        warnings.warn(
            'FSDP is not applicable for single-GPU training. Reverting to DDP.')
        fsdp_config = None

    # set logging level
    if python_log_level is not None:
        logging.basicConfig(
            # Example of format string
            # 2022-06-29 11:22:26,152: rank0[822018][MainThread]: INFO: Message here
            format=
            f'%(asctime)s: rank{dist.get_global_rank()}[%(process)d][%(threadName)s]: %(levelname)s: %(name)s: %(message)s'
        )
        logging.getLogger('llmfoundry').setLevel(python_log_level.upper())

    # Initialize context
    init_context = process_init_device(model_config, fsdp_config)
    logged_cfg.update({'fsdp_config': fsdp_config}, merge=True)

    # Build tokenizer
    tokenizer_name = tokenizer_config['name']
    tokenizer_kwargs = tokenizer_config.get('kwargs', {})
    tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)

    # Scheduler
    scheduler_name: str = scheduler_config.pop('name')
    scheduler = build_scheduler(scheduler_name, scheduler_config)

    # Loggers
    loggers = [
        build_logger(str(name), logger_cfg)
        for name, logger_cfg in logger_configs.items()
    ] if logger_configs else None

    # Callbacks
    callbacks: List[Callback] = [
        build_callback(str(name), callback_cfg)
        for name, callback_cfg in callback_configs.items()
    ] if callback_configs else []

    # Algorithms
    algorithms = [
        build_algorithm(str(name), algorithm_cfg)
        for name, algorithm_cfg in algorithm_configs.items()
    ] if algorithm_configs else None

    # Dataloaders
    print('Building train loader...')
    train_loader = build_dataloader(
        train_loader_config,
        tokenizer,
        device_train_batch_size,
    )
    ## Evaluation
    print('Building eval loader...')
    evaluators = []
    eval_loaders = []
    if eval_loader_config is not None:
        is_multi_eval = isinstance(eval_loader_config, ListConfig)
        eval_configs = eval_loader_config if is_multi_eval else [
            eval_loader_config
        ]
        for eval_config in eval_configs:
            eval_dataloader = build_dataloader(eval_config, tokenizer,
                                               device_eval_batch_size)
            eval_loader = Evaluator(
                label=f'eval/{eval_config.label}' if is_multi_eval else 'eval',
                dataloader=eval_dataloader,
                metric_names=[],  # we will add these after model is created
            )
            eval_loaders.append(eval_loader)

    eval_gauntlet_callback = None

    if icl_tasks_config is not None:
        icl_evaluators, _, eval_gauntlet_callback = build_icl_data_and_gauntlet(
            icl_tasks_config, eval_gauntlet_config, tokenizer,
            device_eval_batch_size, icl_seq_len if icl_seq_len else max_seq_len,
            icl_subset_num_batches)
        evaluators.extend(icl_evaluators)

    if eval_gauntlet_callback is not None:
        callbacks.append(eval_gauntlet_callback)

    # Build Model
    print('Initializing model...')
    with init_context:
        if lora_config is not None:  # frozen model + trainable lora modules
            model: ComposerHFCausalLM = build_composer_peft_model(
                model_config.pretrained_model_name_or_path, lora_config['args'],
                tokenizer)
            print_trainable_parameters(model)  # should not be 100%
        else:  # standard model
            model = build_composer_model(model_config, tokenizer)

        if model_config.get('master_weights_dtype') in ('bf16', 'bfloat16'):
            model = model.to(dtype=torch.bfloat16)
        elif model_config.get('master_weights_dtype') in ('f16', 'float16'):
            model = model.to(dtype=torch.float16)

    # Log number of parameters
    n_params = sum(p.numel() for p in model.parameters())
    logged_cfg.update({'n_params': n_params})

    # Optimizer
    optimizer_name: str = optimizer_config.pop('name')
    optimizer = build_optimizer(model, optimizer_name, optimizer_config)

    # Now add the eval metrics
    if eval_loader_config is not None:
        assert model.train_metrics is not None
        eval_metric_names = list(model.train_metrics.keys())
        for eval_loader in eval_loaders:
            eval_loader.metric_names = eval_metric_names
            evaluators.insert(0, eval_loader)  # Put the base eval_loaders first

    # Build the Trainer
    print('Building trainer...')
    trainer = Trainer(
        run_name=run_name,
        seed=seed,
        model=model,
        train_dataloader=train_loader,
        eval_dataloader=evaluators,
        optimizers=optimizer,
        schedulers=scheduler,
        max_duration=max_duration,
        eval_interval=eval_interval,
        eval_subset_num_batches=eval_subset_num_batches,
        progress_bar=progress_bar,
        log_to_console=log_to_console,
        console_log_interval=console_log_interval,
        loggers=loggers,
        callbacks=callbacks,
        precision=precision,
        algorithms=algorithms,
        device_train_microbatch_size=device_train_microbatch_size,
        fsdp_config=fsdp_config,
        save_folder=save_folder,
        save_filename=save_filename,
        save_latest_filename=save_latest_filename,
        save_interval=save_interval,
        save_num_checkpoints_to_keep=save_num_checkpoints_to_keep,
        save_overwrite=save_overwrite,
        save_weights_only=save_weights_only,
        load_path=load_path,
        load_weights_only=load_weights_only,
        load_ignore_keys=load_ignore_keys,
        autoresume=autoresume,
        python_log_level=python_log_level,
        dist_timeout=dist_timeout,
    )

    print('Logging config')
    log_config(logged_cfg)
    torch.cuda.empty_cache()

    # Eval first if requested
    if eval_first and trainer.state.timestamp.batch.value == 0:
        trainer.eval()

    print('Starting training...')
    trainer.fit()

    print('Done.')
    return trainer


if __name__ == '__main__':
    yaml_path, args_list = sys.argv[1], sys.argv[2:]
    with open(yaml_path) as f:
        yaml_cfg = om.load(f)
    cli_cfg = om.from_cli(args_list)
    cfg = om.merge(yaml_cfg, cli_cfg)
    om.resolve(cfg)
    assert isinstance(cfg, DictConfig)
    main(cfg)