crystal-technologies's picture
Upload 303 files
de4ade4
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""Includes code for task-specific seq-to-seq data formatting.
This file provides some templates/examples of preprocessing functions
that format examples for use in seq-to-seq finetuning tasks.
These preprocessing functions take individual examples that contain raw
text and process them into formatted examples.
These functions have this basic structure:
def preprocessing_fn(example: Dict) -> Dict[str, str]:
# code to extract prompt/response from `example`
...
return {
'prompt': <prompt>,
'response': <response>,
}
where `<prompt>` is a placeholder for the prompt text string that you
extracted from the input example, and '<response>' is a placeholder for
the response text string.
Just to be clear, "prompt" represents the text you would give the model
at inference time, and "response" represents the text you are training
it to produce given the prompt.
The key requirement of these functions is that they return a dictionary
with "prompt" and "response" keys, and that the values associated with
those keys are strings (i.e. text).
"""
import importlib
import logging
import os
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
import datasets as hf_datasets
from omegaconf import DictConfig
from streaming import StreamingDataset
from transformers import PreTrainedTokenizerBase
log = logging.getLogger(__name__)
__all__ = ['dataset_constructor']
def _tokenize_formatted_example(
example: Dict[str, Any],
tokenizer: PreTrainedTokenizerBase) -> Dict[str, List[int]]:
if ('prompt' not in example) or ('response' not in example):
raise KeyError(
'Unable to tokenize example because it has not been properly formatted. ' +\
'"prompt" and "response" are required keys but at least one was missing ' +\
f'from {example=}.'
)
if not isinstance(example['prompt'], str):
raise TypeError(
f'Unable to tokenize example because "prompt" was not a string. {example=}'
)
if not isinstance(example['response'], str):
raise TypeError(
f'Unable to tokenize example because "response" was not a string. {example=}'
)
return tokenizer(text=example['prompt'], text_target=example['response'])
class StreamingFinetuningDataset(StreamingDataset):
"""Finetuning dataset with flexible tokenization using StreamingDataset.
Args:
tokenizer (Tokenizer): The name of the HuggingFace tokenizer to use to
tokenize samples.
local (str): Local dataset directory where shards are cached by split.
remote (str, optional): Remote path or directory to download the dataset from. If ``None``,
its data must exist locally. StreamingDataset uses either ``streams`` or
``remote``/``local``. Defaults to ``None``.
split (str, optional): Which dataset split to use, if any. If provided, we stream from/to
the ``split`` subdirs of ``remote`` and ``local``. Defaults to ``None``.
download_retry (int): Number of download re-attempts before giving up. Defaults to ``2``.
download_timeout (float): Number of seconds to wait for a shard to download before raising
an exception. Defaults to ``60``.
validate_hash (str, optional): Optional hash or checksum algorithm to use to validate
shards. Defaults to ``None``.
keep_zip (bool): Whether to keep or delete the compressed form when decompressing
downloaded shards. If ``False``, keep iff remote is local or no remote. Defaults to
`False``.
epoch_size (int, optional): Number of samples to draw per epoch balanced across all
streams. If ``None``, takes its value from the total number of underlying samples.
Provide this field if you are weighting streams relatively to target a larger or
smaller epoch size. Defaults to ``None``.
predownload (int, optional): Target number of samples ahead to download the shards of while
iterating. Defaults to ``100_000``.
cache_limit (Union[int, str], optional) - Maximum size in bytes of this StreamingDataset's
shard cache. Before downloading a shard, the least recently used resident shard(s) may
be evicted (deleted from the local cache) in order to stay under the limit. Set to None
to disable shard eviction. Supports integer bytes as well as string human-readable
bytes (e.g., 100b, 64kb, 77mb, and so on). Defaults to None.
partition_algo (str): Which partitioning algorithm to use. Defaults to ``orig``.
num_canonical_nodes (int, optional): Canonical number of nodes for shuffling with
resumption. Defaults to ``None``, which is interpreted as the number of nodes of the
initial run.
batch_size (int, optional): Batch size of its DataLoader, which affects how the dataset is
partitioned over the workers. Defaults to ``None``.
shuffle (bool): Whether to iterate over the samples in randomized order. Defaults to
``False``.
shuffle_algo (str): Which shuffling algorithm to use. Defaults to ``py1b``.
shuffle_seed (int): Seed for Deterministic data shuffling. Defaults to ``9176``.
shuffle_block_size (int): Unit of shuffle. Defaults to ``1 << 18``.
sampling_method (str): Which sampling method to use, either ``balanced`` or ``fixed``.
Defaults to ``balanced``.
sampling_granularity (int): When picking samples for a stream's final partial repeat,
how many samples to pick from the same shard at a time (``1`` for evenly balanced
across shards, ``1000`` to pick 1000 samples from the same shard at a time, etc).
Defaults to ``1``.
batching_method (str): Which batching method to use, either ``random``, ``stratified``, or
``per_stream``. Defaults to ``random``.
"""
def __init__(self,
tokenizer: PreTrainedTokenizerBase,
local: str,
remote: Optional[str] = None,
split: Optional[str] = None,
download_retry: int = 2,
download_timeout: float = 60,
validate_hash: Optional[str] = None,
keep_zip: bool = False,
epoch_size: Optional[int] = None,
predownload: Optional[int] = None,
cache_limit: Optional[Union[int, str]] = None,
partition_algo: str = 'orig',
num_canonical_nodes: Optional[int] = None,
batch_size: Optional[int] = None,
shuffle: bool = False,
shuffle_algo: str = 'py1b',
shuffle_seed: int = 9176,
shuffle_block_size: int = 1 << 18,
sampling_method: str = 'balanced',
sampling_granularity: int = 1,
batching_method: str = 'random',
**kwargs: Any):
if len(kwargs) > 0:
raise ValueError(
f'StreamingFinetuningDataset() got an unexpected keyword argument: {kwargs}'
)
if remote is None or (local == remote):
if os.path.isdir(local):
contents = set(os.listdir(local))
if split not in contents:
raise ValueError(
f'local directory {local} does not contain split {split}'
)
# Build Dataset
super().__init__(
local=local,
remote=remote,
split=split,
download_retry=download_retry,
download_timeout=download_timeout,
validate_hash=validate_hash,
keep_zip=keep_zip,
epoch_size=epoch_size,
predownload=predownload,
cache_limit=cache_limit,
partition_algo=partition_algo,
num_canonical_nodes=num_canonical_nodes,
batch_size=batch_size,
shuffle=shuffle,
shuffle_algo=shuffle_algo,
shuffle_seed=shuffle_seed,
shuffle_block_size=shuffle_block_size,
sampling_method=sampling_method,
sampling_granularity=sampling_granularity,
batching_method=batching_method,
)
self.tokenizer = tokenizer
# How to process a sample
def __getitem__(self, idx: int) -> Dict[str, Any]:
sample = super().__getitem__(idx)
return _tokenize_formatted_example(sample, tokenizer=self.tokenizer)
class DatasetConstructor:
def __init__(self):
self._task_preprocessing_registry: Dict[str, Callable] = {}
def register(self, *names: str) -> Callable[[Callable], Callable]:
"""Decorator for registering preprocessing functions."""
def _register_func(name: str, func: Callable) -> None:
if name in self._task_preprocessing_registry:
raise ValueError(
f'A tokenization function has already been registered with {name=}.'
)
self._task_preprocessing_registry[name] = func
return
def wrapper(func: Callable) -> Callable:
for name in names:
_register_func(name, func)
return func
return wrapper
def print_registered_tasks(self) -> None:
tasks = sorted(self._task_preprocessing_registry.keys())
print('\n'.join(tasks))
def get_preprocessing_fn_from_dict(
self, mapping: Union[Dict, DictConfig]
) -> Callable[[Dict[str, Any]], Dict[str, str]]:
"""Get a preprocessing function from a dictionary.
The dictionary maps column names in the dataset to "prompt" and "response".
For example,
```yaml
preprocessing_fn:
prompt: text
response: summary
```
would map the `text` column as to prompt and the `summary` column as the response.
Args:
mapping (dict): A dictionary mapping column names to "prompt" and "response".
Returns:
Callable: The preprocessing function.
Raises:
ValueError: If the mapping does not have keys "prompt" and "response".
"""
def _preprocessor(example: Dict[str, Any]) -> Dict[str, str]:
if list(mapping.keys()) != ['prompt', 'response']:
raise ValueError(
f'Expected {mapping=} to have keys "prompt" and "response".'
)
return {
'prompt': example[mapping['prompt']],
'response': example[mapping['response']]
}
return _preprocessor
def get_preprocessing_fn_from_str(
self,
preprocessor: Optional[str],
dataset_name: Optional[str] = None
) -> Optional[Callable[[Dict[str, Any]], Dict[str, str]]]:
"""Get a preprocessing function from a string.
String can be either a registered function or an import path.
Args:
preprocessor (Optional[str]): The name of the preprocessing function, or an import path.
dataset_name (Optional[str]): The dataset name to look up in the registry.
Returns:
Callable: The preprocessing function or None if not found.
Raises:
ValueError: If the preprocessing function import from the provided string fails.
"""
if preprocessor is None:
if dataset_name is None:
return None
if dataset_name in self._task_preprocessing_registry:
log.info(
f'Re-formatting dataset with "{dataset_name}" preprocessing function.'
)
return self._task_preprocessing_registry[dataset_name]
else:
log.info('No preprocessor was supplied and no preprocessing function ' +\
f'is registered for dataset name "{dataset_name}". No additional ' +\
'preprocessing will be applied. If the dataset is already formatted ' +\
'correctly, you can ignore this message.')
return None
if preprocessor in self._task_preprocessing_registry:
log.info(
f'Re-formatting dataset with "{preprocessor}" preprocessing function.'
)
return self._task_preprocessing_registry[preprocessor]
try:
import_path, function_name = preprocessor.split(':', maxsplit=1)
module = importlib.import_module(import_path)
preprocessing_fn = getattr(module, function_name)
except Exception as e:
raise ValueError(
f'Failed to import preprocessing function from string = {preprocessor}.'
) from e
return preprocessing_fn
def build_from_hf(
self, cfg: DictConfig, max_seq_len: int,
tokenizer: PreTrainedTokenizerBase
) -> Union[hf_datasets.DatasetDict, hf_datasets.Dataset,
hf_datasets.IterableDatasetDict, hf_datasets.IterableDataset]:
"""Load a HuggingFace Datasets, preprocess, and tokenize.
Note: This function will drop examples where the prompt is longer than the max_seq_len
Args:
cfg (DictConfig): The dataset configuration.
max_seq_len (int): The maximum sequence length. Examples with prompts longer than this will be dropped.
tokenizer (Tokenizer): The tokenizer to be used for tokenizing the dataset.
Returns:
Dataset: The tokenized dataset.
"""
dataset_name = cfg.hf_name
# HF datasets does not support a split with dashes,so we replace split
# dashes with underscore.
split = cfg.split.replace('-', '_')
kwargs = cfg.get('hf_kwargs', {})
proto_preprocessing_fn = cfg.get('preprocessing_fn')
if isinstance(proto_preprocessing_fn, dict) or isinstance(
proto_preprocessing_fn, DictConfig):
preprocessing_fn = self.get_preprocessing_fn_from_dict(
proto_preprocessing_fn)
else:
preprocessing_fn = self.get_preprocessing_fn_from_str(
proto_preprocessing_fn, dataset_name)
dataset = hf_datasets.load_dataset(dataset_name, split=split, **kwargs)
def dataset_mapper(example: Dict):
if preprocessing_fn is not None:
example = preprocessing_fn(example)
return _tokenize_formatted_example(example, tokenizer)
columns_to_remove = list(dataset[0].keys())
tokenized_dataset = dataset.map(
dataset_mapper,
batched=False,
remove_columns=columns_to_remove,
)
prompt_length_filtered_dataset = tokenized_dataset.filter(
lambda example: len(example['input_ids']) < max_seq_len)
examples_removed = len(tokenized_dataset) - len(
prompt_length_filtered_dataset)
if examples_removed > 0:
warnings.warn(
f'Dropped {examples_removed} examples where the prompt was longer than {max_seq_len}.'
)
empty_examples_dropped_dataset = prompt_length_filtered_dataset.filter(
lambda example: len(example['input_ids']) > 0 and len(example[
'labels']) > 0 and any(token_id != tokenizer.pad_token_id
for token_id in example['labels']))
empty_examples_removed = len(prompt_length_filtered_dataset) - len(
empty_examples_dropped_dataset)
if empty_examples_removed > 0:
warnings.warn(
f'Dropped {empty_examples_removed} examples where the prompt or response was empty, '
+ 'or the response was only padding tokens.')
return empty_examples_dropped_dataset
def build_from_streaming(self, *args: Any,
**kwargs: Any) -> StreamingFinetuningDataset:
return StreamingFinetuningDataset(*args, **kwargs)
dataset_constructor = DatasetConstructor()
@dataset_constructor.register('tatsu-lab/alpaca')
def alpaca_preprocessing_function(inp: Dict) -> Dict[str, str]:
"""Split out prompt/response from text."""
try:
prompt, response = inp['text'].split('### Response:')
prompt += '### Response:'
except Exception as e:
raise ValueError(
f"Unable to extract prompt/response from 'text'={inp['text']}"
) from e
return {'prompt': prompt, 'response': response}
@dataset_constructor.register('HuggingFaceH4/databricks_dolly_15k')
def dolly_preprocessing_function(inp: Dict) -> Dict[str, str]:
"""Format the text string."""
PROMPT_FORMAT = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n'
try:
if inp['input'] != '':
instruction = inp['instruction'] + '\n' + inp['input']
else:
instruction = inp['instruction']
prompt = PROMPT_FORMAT.format(instruction=instruction)
response = inp['output']
except Exception as e:
raise ValueError(
f'Unable to extract prompt/response from {inp=}') from e
return {'prompt': prompt, 'response': response}
@dataset_constructor.register('bigscience/P3')
def p3_preprocessing_function(inp: Dict) -> Dict[str, str]:
"""Format the already-split example."""
return {
'prompt': inp['inputs'] + ':',
'response': inp['targets'],
}
# Muennighoff's P3 and flan datasets share a similar convention
@dataset_constructor.register('Muennighoff/P3', 'Muennighoff/flan')
def muennighoff_tokenize_function(inp: Dict) -> Dict[str, str]:
"""Format the already-split example."""
try:
prompt: str = inp['inputs']
response: str = inp['targets']
# Put a space before the response if needed
transitions = (' ', '\n', '\t')
if not (prompt.endswith(transitions) or
response.startswith(transitions)):
response = ' ' + response
except Exception as e:
raise ValueError(
f'Unable to process prompt/response from {inp=}') from e
return {'prompt': prompt, 'response': response}