crystal-technologies's picture
Upload 303 files
de4ade4
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import logging
import math
from typing import Callable, Dict, Iterable, Optional, Tuple, Union
import torch
from composer.utils import dist
from torch.optim.optimizer import Optimizer
log = logging.getLogger(__name__)
class DecoupledLionW(Optimizer):
metric_functions = {
'l2_norm/moment':
lambda param, optim_state, step_tensor: torch.linalg.vector_norm(
optim_state['exp_avg']),
'l2_norm/param':
lambda param, optim_state, step_tensor: torch.linalg.vector_norm(
param.data),
'l2_norm/update':
lambda param, optim_state, step_tensor: torch.linalg.vector_norm(
step_tensor),
'l2_norm/grad':
lambda param, optim_state, step_tensor: torch.linalg.vector_norm(
param.grad),
}
def __init__(
self,
params: Union[Iterable[torch.Tensor], Iterable[dict]],
lr: float = 1e-4,
betas: Tuple[float, float] = (0.9, 0.99),
weight_decay: float = 0.0,
):
if lr <= 0.:
raise Exception(f'Invalid LR: {lr}. LR must be > 0')
if not all([0. <= beta <= 1. for beta in betas]):
raise Exception(
f'Invalid beta values: {betas} All betas must be between 0 and 1.'
)
if weight_decay >= 1e-3:
log.warning(
f'You are using a high value of `weight_decay={weight_decay}` for the `DecoupledLionW` optimizer. Are you sure you want to do this? '
+
f'Your model\'s weights will be multiplied by {1.0 - weight_decay} on every step!'
)
defaults = {'lr': lr, 'betas': betas, 'weight_decay': weight_decay}
super().__init__(params, defaults)
for group in self.param_groups:
group['initial_lr'] = group['lr']
@staticmethod
def lionw(p: torch.Tensor, grad: torch.Tensor, exp_avg: torch.Tensor,
lr: float, initial_lr: float, wd: float, beta1: float,
beta2: float) -> None:
# stepweight decay
if wd != 0:
decay_factor = (lr / initial_lr) if initial_lr else 1.0
p.data.mul_(1 - decay_factor * wd)
# update is interpolation between gradient and momentum
update = exp_avg.lerp(grad, 1 - beta1).sign_()
p.add_(update, alpha=-lr)
# momentum is interp b/w gradient and itself
exp_avg.lerp_(grad, 1 - beta2)
@torch.no_grad()
def step(self, closure: Optional[Callable] = None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in filter(lambda p: p.grad is not None and p.requires_grad,
group['params']):
grad, lr, initial_lr, wd, beta1, beta2, state = p.grad, group[
'lr'], group['initial_lr'], group[
'weight_decay'], *group['betas'], self.state[p]
# init state - exponential moving average of gradient values
if len(state) == 0:
state['exp_avg'] = torch.zeros_like(p)
exp_avg = state['exp_avg']
self.lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2)
return loss
def dist_reduce_metrics(self, optimizer_metrics: Dict[str, torch.Tensor]):
local_keys = list(optimizer_metrics.keys())
all_gathered_keys = dist.all_gather_object(local_keys)
all_keys = set()
for keys in all_gathered_keys:
all_keys.update(keys)
# Sort keys to ensure every rank has the same keys order
# Only L2 norm metric keys are present, can apply regular sort
all_keys = sorted(all_keys)
for metric in all_keys:
if metric.startswith('l2_norm'):
reduced = optimizer_metrics[metric]
if dist.get_world_size() > 1:
dist.all_reduce(reduced, reduce_operation='SUM')
optimizer_metrics[metric] = torch.tensor(math.sqrt(reduced))
else:
reduced = optimizer_metrics[metric]
if dist.get_world_size() > 1:
dist.all_reduce(reduced, reduce_operation='SUM')
optimizer_metrics[metric] = reduced / dist.get_world_size()
return optimizer_metrics
def pre_reduce_metrics(self, optimizer_metrics: Dict[str, torch.Tensor]):
"""Preprocess metrics to reduce across ranks correctly."""
# Only L2 norm metric keys are present, can skip sorting at this stage
for metric in optimizer_metrics:
# L2 norms need to be squared, before they are reduced via summation
optimizer_metrics[metric] = optimizer_metrics[metric]**2
return optimizer_metrics
def report_per_parameter_metrics(self, param: torch.Tensor, name: str,
optimizer_metrics: dict):
lr = self.param_groups[0]['lr']
weight_decay = self.param_groups[0]['weight_decay']
initial_lr = self.param_groups[0]['initial_lr']
beta1, _ = self.param_groups[0]['betas']
if param in self.state:
param_optim_state = self.state[param]
step_tensor = param_optim_state['exp_avg'].clone().lerp_(
param.grad, 1 - beta1).sign_().mul_(lr)
decay_factor = (lr / initial_lr) if initial_lr else 1.0
step_tensor.add_(param, alpha=-weight_decay * decay_factor)
for metric in self.metric_functions:
optimizer_metrics[f'{metric}/{name}'] = self.metric_functions[
metric](param, param_optim_state, step_tensor)
return optimizer_metrics