crystal-technologies's picture
Upload 303 files
de4ade4
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""Experimental learning rate schedulers used for training LLMs."""
import textwrap
import warnings
from typing import Union
from composer.core import State, Time, TimeUnit
from composer.optim import ComposerScheduler, LinearScheduler
from composer.optim.scheduler import _convert_time
__all__ = ['InverseSquareRootWithWarmupScheduler']
def _raise_if_units_dont_match(time: Union[str, Time], t_max: Union[str, Time],
name: str) -> None:
if isinstance(time, str):
time = Time.from_timestring(time)
if isinstance(t_max, str):
t_max = Time.from_timestring(t_max)
if time.unit != t_max.unit:
raise ValueError(f'{time.unit=} does not match {t_max.unit=}.')
def _raise_if_units_dur(time: Union[str, Time], name: str) -> None:
if isinstance(time, str):
time = Time.from_timestring(time)
if time.unit == TimeUnit('dur'):
raise ValueError(f'{name} cannot be in units of "dur".')
class InverseSquareRootWithWarmupScheduler(ComposerScheduler):
r"""Inverse square root LR decay with warmup and optional linear cooldown.
Specifically, the learning rate multiplier :math:`\alpha(t)` can be expressed as:
.. math::
\alpha(t) = \begin{cases}
t / t_{warmup}, & \text{if } t < t_{warmup} \\
\alpha_{f,decay} + \frac{1 - \alpha_{f,decay}}{\sqrt{\tau_d}}, & \text{if } t_{warmup} <= t < t_{max} - t_{cooldown} \\
\alpha_i + (alpha_{f,cooldown} - \alpha_i) \times \tau_c, & \text{otherwise}
\end{cases}
Given :math:`\tau_d`, the time elapsed during the inverse square root decay (normalized by :math:`t_scale`), as:
.. math::
\tau_d = (t - t_{warmup} + t_{scale}) / {t_scale}
:math:`\alpha_i` as the value of the learning rate multiplier when :math:`\tau_d` is evaluated at :math:`t = t_{max} - t_{cooldown}`,
and :math:`\tau_c`, the fraction of linear cooldown time elapsed (clipped to the interval :math:`[0, 1]`), as:
.. math::
\tau_c = (t - t_{max} + t_{cooldown}) / t_{cooldown}
Where :math:`t_{warmup}` represents the warmup time, :math:`t_{scale}` represents the time scale,
:math:`t_{cooldown}` represents the cooldown time, :math:`t_{max}` represents the duration of this scheduler,
:math:`\alpha_{f,decay}` represents the learning rate multiplier that the inverse square root decays to at infinite time,
and :math:`\alpha_{f,cooldown}` represents the learning rate multiplier that the linear cooldown decays to.
Note, :math:`\alpha_{f,decay} >= \alpha_{f,cooldown}` to ensure that the learning rate is monotonically decreasing after warmup.
Also note, ``t_warmup``, ``t_scale``, and ``t_cooldown`` cannot be specified in units of duration; since this schedule is designed for continual learning,
``max_duration`` is expected to change. Instead, these parameters need to be specified in the same units as ``max_duration`` passed to the trainer.
Args:
t_warmup (str | Time): The warmup time.
t_scale (str | Time): The time scale.
t_cooldown (str | Time): The cooldown time.
t_max (str | Time): The duration of this scheduler. Default = ``"1dur"``.
alpha_f_decay (float): The learning rate multiplier to decay inverse square root decay to. Default = ``0.0``.
alpha_f_cooldown (float): The learning rate multiplier to decay linear cooldown to. Default = ``0.0``.
"""
def __init__(self,
t_warmup: Union[str, Time],
t_scale: Union[str, Time],
t_cooldown: Union[str, Time],
t_max: Union[str, Time] = '1dur',
alpha_f_decay: float = 0.0,
alpha_f_cooldown: float = 0.0) -> None:
if alpha_f_decay < alpha_f_cooldown:
raise ValueError(('Required: alpha_f_decay >= alpha_f_cooldown. '
f'Current: alpha_f_decay={alpha_f_decay}, '
f'alpha_f_cooldown={alpha_f_cooldown}.'))
_raise_if_units_dur(t_warmup, 't_warmup')
_raise_if_units_dur(t_scale, 't_scale')
_raise_if_units_dur(t_cooldown, 't_cooldown')
self.t_warmup = t_warmup
self.t_scale = t_scale
self.t_cooldown = t_cooldown
self.t_max = t_max
self.alpha_f_decay = alpha_f_decay
self.alpha_f_cooldown = alpha_f_cooldown
self.warmup_scheduler = LinearScheduler(alpha_i=0.0,
alpha_f=1.0,
t_max=t_warmup)
def __call__(self, state: State, ssr: float = 1.0) -> float:
assert state.max_duration is not None, 'max_duration should be set whenever schedulers are invoked'
_raise_if_units_dont_match(self.t_warmup, state.max_duration,
't_warmup')
_raise_if_units_dont_match(self.t_scale, state.max_duration, 't_scale')
_raise_if_units_dont_match(self.t_cooldown, state.max_duration,
't_cooldown')
t_warmup = _convert_time(self.t_warmup, state)
if t_warmup.value == 0:
warnings.warn(
textwrap.dedent("""\
The warmup duration is 0. If warmup was specified as a fraction of the total
training duration, the warmup duration is calculated in the
same unit as the trainer's max_duration parameter."""))
if state.timestamp < t_warmup:
return self.warmup_scheduler(state)
t_scale = _convert_time(self.t_scale, state, ssr=ssr)
t_cooldown = _convert_time(self.t_cooldown, state, ssr=ssr)
t_max = _convert_time(self.t_max, state, ssr=ssr)
current_time = state.timestamp.get(t_scale.unit)
t_shift = t_scale - t_warmup
# t_cooldown_start is max of t_warmup, t_max - t_cooldown
t_cooldown_start = t_max - t_cooldown
if t_cooldown_start < t_warmup:
t_cooldown_start = t_warmup
if state.timestamp < t_cooldown_start:
# Rescale LR by a coefficient equal to the inverse square root of the time
# elapsed after warmup, rescaled by the time scale, such that, at
# infinite time, the LR decays to alpha_f_decay.
coeff = 1 / ((current_time + t_shift) / t_scale).value**0.5
current_factor = (self.alpha_f_decay + coeff *
(1.0 - self.alpha_f_decay))
return current_factor
else:
coeff = 1 / ((t_cooldown_start + t_shift) / t_scale).value**0.5
alpha_i = self.alpha_f_decay + coeff * (1.0 - self.alpha_f_decay)
if t_cooldown.value == 0:
return alpha_i
# Linearly decay the LR from its value at the step at which cooldown
# started to alpha_f_cooldown over t_cooldown time.
frac_of_cooldown = ((current_time - t_cooldown_start) /
t_cooldown).value
frac_of_cooldown = min(1.0, frac_of_cooldown)
current_factor = (alpha_i + frac_of_cooldown *
(self.alpha_f_cooldown - alpha_i))
return current_factor