crystal-technologies's picture
Upload 303 files
de4ade4
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import itertools
import os
import random
import time
import warnings
from argparse import ArgumentParser, ArgumentTypeError, Namespace
from contextlib import nullcontext
from typing import Dict, Union
import numpy as np
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
def get_dtype(dtype: str):
if dtype == 'fp32':
return torch.float32
elif dtype == 'fp16':
return torch.float16
elif dtype == 'bf16':
return torch.bfloat16
else:
raise NotImplementedError(
f'dtype {dtype} is not supported. ' +\
f'We only support fp32, fp16, and bf16 currently')
def str2bool(v: Union[str, bool]):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
def str_or_bool(v: Union[str, bool]):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
return v
def parse_args() -> Namespace:
"""Parse commandline arguments."""
parser = ArgumentParser(
description='Load a HF CausalLM Model and use it to generate text.')
parser.add_argument('-n', '--name_or_path', type=str, required=True)
parser.add_argument(
'-p',
'--prompts',
nargs='+',
default=[
'My name is',
'This is an explanation of deep learning to a five year old. Deep learning is',
],
help='Generation prompts. Use syntax "file::/path/to/prompt.txt" to load a ' +\
'prompt contained in a txt file.'
)
parser.add_argument('--max_seq_len', type=int, default=None)
parser.add_argument('--max_new_tokens', type=int, default=100)
parser.add_argument('--max_batch_size', type=int, default=None)
#####
# Note: Generation config defaults are set to match Hugging Face defaults
parser.add_argument('--temperature', type=float, nargs='+', default=[1.0])
parser.add_argument('--top_k', type=int, nargs='+', default=[50])
parser.add_argument('--top_p', type=float, nargs='+', default=[1.0])
parser.add_argument('--repetition_penalty',
type=float,
nargs='+',
default=[1.0])
parser.add_argument('--no_repeat_ngram_size',
type=int,
nargs='+',
default=[0])
#####
parser.add_argument('--seed', type=int, nargs='+', default=[42])
parser.add_argument('--do_sample',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--use_cache',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--eos_token_id', type=int, default=None)
parser.add_argument('--pad_token_id', type=int, default=None)
parser.add_argument('--model_dtype',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default=None)
parser.add_argument('--autocast_dtype',
type=str,
choices=['fp32', 'fp16', 'bf16'],
default=None)
parser.add_argument('--warmup',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--trust_remote_code',
type=str2bool,
nargs='?',
const=True,
default=True)
parser.add_argument('--use_auth_token',
type=str_or_bool,
nargs='?',
const=True,
default=None)
parser.add_argument('--revision', type=str, default=None)
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--device_map', type=str, default=None)
parser.add_argument('--attn_impl', type=str, default=None)
return parser.parse_args()
def load_prompt_string_from_file(prompt_path_str: str):
if not prompt_path_str.startswith('file::'):
raise ValueError('prompt_path_str must start with "file::".')
_, prompt_file_path = prompt_path_str.split('file::', maxsplit=1)
prompt_file_path = os.path.expanduser(prompt_file_path)
if not os.path.isfile(prompt_file_path):
raise FileNotFoundError(
f'{prompt_file_path=} does not match any existing files.')
with open(prompt_file_path, 'r') as f:
prompt_string = ''.join(f.readlines())
return prompt_string
def maybe_synchronize():
if torch.cuda.is_available():
torch.cuda.synchronize()
def main(args: Namespace) -> None:
# Set device or device_map
if args.device and args.device_map:
raise ValueError('You can only set one of `device` and `device_map`.')
if args.device is not None:
device = args.device
device_map = None
else:
device = None
device_map = args.device_map or 'auto'
print(f'Using {device=} and {device_map=}')
# Set model_dtype
if args.model_dtype is not None:
model_dtype = get_dtype(args.model_dtype)
else:
model_dtype = torch.float32
print(f'Using {model_dtype=}')
# Load prompts
prompt_strings = []
for prompt in args.prompts:
if prompt.startswith('file::'):
prompt = load_prompt_string_from_file(prompt)
prompt_strings.append(prompt)
# Grab config first
print(f'Loading HF Config...')
from_pretrained_kwargs = {
'use_auth_token': args.use_auth_token,
'trust_remote_code': args.trust_remote_code,
'revision': args.revision,
}
try:
config = AutoConfig.from_pretrained(args.name_or_path,
**from_pretrained_kwargs)
if hasattr(config, 'init_device') and device is not None:
config.init_device = device
if args.attn_impl is not None and hasattr(config, 'attn_config'):
config.attn_config['attn_impl'] = args.attn_impl
if args.max_seq_len is not None and hasattr(config, 'max_seq_len'):
config.max_seq_len = args.max_seq_len
except Exception as e:
raise RuntimeError(
'If you are having auth problems, try logging in via `huggingface-cli login` ' +\
'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... ' +\
'using your access token from https://huggingface.co/settings/tokens.'
) from e
# Build tokenizer
print('\nLoading HF tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.name_or_path,
**from_pretrained_kwargs)
if tokenizer.pad_token_id is None:
warnings.warn(
'pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id.'
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load HF Model
print(f'Loading HF model with dtype={model_dtype}...')
try:
model = AutoModelForCausalLM.from_pretrained(args.name_or_path,
config=config,
torch_dtype=model_dtype,
device_map=device_map,
**from_pretrained_kwargs)
model.eval()
print(f'n_params={sum(p.numel() for p in model.parameters())}')
if device is not None:
print(f'Placing model on {device=}...')
model.to(device)
except Exception as e:
raise RuntimeError(
'Unable to load HF model. ' +
'If you are having auth problems, try logging in via `huggingface-cli login` '
+
'or by setting the environment variable `export HUGGING_FACE_HUB_TOKEN=... '
+
'using your access token from https://huggingface.co/settings/tokens.'
) from e
# Autocast
if args.autocast_dtype is not None:
autocast_dtype = get_dtype(args.autocast_dtype)
autocast_context = torch.autocast(model.device.type, autocast_dtype)
print(f'Using autocast with dtype={autocast_dtype}...')
else:
autocast_context = nullcontext()
print('NOT using autocast...')
done_warmup = False
for temp, topp, topk, repp, nrnz, seed in itertools.product(
args.temperature, args.top_p, args.top_k, args.repetition_penalty,
args.no_repeat_ngram_size, args.seed):
# Seed randomness
random.seed(seed)
torch.manual_seed(seed)
print(f'\nGenerate seed:\n{seed}')
generate_kwargs = {
'max_new_tokens': args.max_new_tokens,
'temperature': temp,
'top_p': topp,
'top_k': topk,
'repetition_penalty': repp,
'no_repeat_ngram_size': nrnz,
'use_cache': args.use_cache,
'do_sample': False if temp == 0 else args.do_sample,
'eos_token_id': args.eos_token_id or tokenizer.eos_token_id,
'pad_token_id': args.pad_token_id or tokenizer.pad_token_id,
}
print(f'\nGenerate kwargs:\n{generate_kwargs}')
# Generate function with correct context managers
def _generate(encoded_inp: Dict[str, torch.Tensor]):
with torch.no_grad():
with autocast_context:
return model.generate(
input_ids=encoded_inp['input_ids'],
attention_mask=encoded_inp['attention_mask'],
**generate_kwargs,
)
# Split into prompt batches
batches = []
if args.max_batch_size:
bs = args.max_batch_size
batches = [
prompt_strings[i:i + bs]
for i in range(0, len(prompt_strings), bs)
]
else:
batches = [prompt_strings]
for batch in batches:
print(f'\nTokenizing prompts...')
maybe_synchronize()
encode_start = time.time()
encoded_inp = tokenizer(batch, return_tensors='pt', padding=True)
for key, value in encoded_inp.items():
encoded_inp[key] = value.to(model.device)
maybe_synchronize()
encode_end = time.time()
input_tokens = torch.sum(
encoded_inp['input_ids'] !=
tokenizer.pad_token_id, # type: ignore
axis=1).numpy(force=True)
# Warmup
if args.warmup and (not done_warmup):
print('Warming up...')
_ = _generate(encoded_inp)
done_warmup = True
# Run HF generate
print('Generating responses...')
maybe_synchronize()
gen_start = time.time()
encoded_gen = _generate(encoded_inp)
maybe_synchronize()
gen_end = time.time()
decode_start = time.time()
decoded_gen = tokenizer.batch_decode(encoded_gen,
skip_special_tokens=True)
maybe_synchronize()
decode_end = time.time()
gen_tokens = torch.sum(encoded_gen != tokenizer.pad_token_id,
axis=1).numpy(force=True) # type: ignore
# Print generations
delimiter = '#' * 100
# decode the encoded prompt to handle the case when the tokenizer
# trims extra spaces or does other pre-tokenization things
effective_prompts = tokenizer.batch_decode(encoded_inp['input_ids'],
skip_special_tokens=True)
for idx, (effective_prompt, prompt, gen) in enumerate(
zip(effective_prompts, batch, decoded_gen)):
continuation = gen[len(effective_prompt):]
print(delimiter)
if len(continuation) > 0:
print('\033[92m' + prompt + '\033[0m' + continuation)
else:
print('Warning. No non-special output tokens generated.')
print(
'This can happen if the generation only contains padding/eos tokens.'
)
print('Debug:')
full_generation = tokenizer.batch_decode(
encoded_gen, skip_special_tokens=False)[idx]
print('\033[92m' + 'Prompt:\n' + prompt + '\033[0m')
print('Full generation:\n' + full_generation)
print(delimiter)
# Print timing info
bs = len(batch)
# ensure that gen_tokens >= 1 in case model only generated padding tokens
gen_tokens = np.maximum(gen_tokens, np.ones_like(gen_tokens))
output_tokens = gen_tokens - input_tokens
total_input_tokens = input_tokens.sum()
total_output_tokens = output_tokens.sum()
encode_latency = 1000 * (encode_end - encode_start)
gen_latency = 1000 * (gen_end - gen_start)
decode_latency = 1000 * (decode_end - decode_start)
total_latency = encode_latency + gen_latency + decode_latency
latency_per_output_token = total_latency / total_output_tokens
output_tok_per_sec = 1000 / latency_per_output_token
print(f'{bs=}, {input_tokens=}, {output_tokens=}')
print(f'{total_input_tokens=}, {total_output_tokens=}')
print(
f'{encode_latency=:.2f}ms, {gen_latency=:.2f}ms, {decode_latency=:.2f}ms, {total_latency=:.2f}ms'
)
print(f'{latency_per_output_token=:.2f}ms/tok')
print(f'{output_tok_per_sec=:.2f}tok/sec')
if __name__ == '__main__':
main(parse_args())