|
|
|
|
|
|
|
"""GPT Blocks used for the GPT Model.""" |
|
|
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from llmfoundry.models.layers.attention import ATTN_CLASS_REGISTRY |
|
from llmfoundry.models.layers.ffn import FFN_CLASS_REGISTRY, build_ffn |
|
from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY |
|
|
|
|
|
class MPTBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_heads: int, |
|
expansion_ratio: int, |
|
attn_config: Optional[Dict] = None, |
|
ffn_config: Optional[Dict] = None, |
|
resid_pdrop: float = 0.0, |
|
norm_type: str = 'low_precision_layernorm', |
|
fc_type: str = 'torch', |
|
device: Optional[str] = None, |
|
no_bias: bool = False, |
|
**kwargs: Any, |
|
): |
|
if attn_config is None: |
|
attn_config = { |
|
'attn_type': 'multihead_attention', |
|
'attn_pdrop': 0.0, |
|
'attn_impl': 'triton', |
|
'qk_ln': False, |
|
'clip_qkv': None, |
|
'softmax_scale': None, |
|
'prefix_lm': False, |
|
'attn_uses_sequence_id': False, |
|
'alibi': False, |
|
'alibi_bias_max': 8, |
|
} |
|
|
|
if ffn_config is None: |
|
ffn_config = { |
|
'ffn_type': 'mptmlp', |
|
} |
|
|
|
del kwargs |
|
super().__init__() |
|
|
|
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] |
|
assert isinstance(attn_config['attn_type'], str) |
|
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']] |
|
|
|
|
|
args_to_exclude_in_attn_class = { |
|
'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', |
|
'alibi_bias_max' |
|
} |
|
attn_config_subset_for_attn_class = { |
|
k: v |
|
for k, v in attn_config.items() |
|
if k not in args_to_exclude_in_attn_class |
|
} |
|
|
|
self.norm_1 = norm_class(d_model, device=device) |
|
self.attn = attn_class( |
|
d_model=d_model, |
|
n_heads=n_heads, |
|
fc_type=fc_type, |
|
device=device, |
|
**attn_config_subset_for_attn_class, |
|
bias=not no_bias, |
|
) |
|
self.norm_2 = None |
|
if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', |
|
False): |
|
self.norm_2 = norm_class(d_model, device=device) |
|
self.ffn = build_ffn( |
|
d_model=d_model, |
|
expansion_ratio=expansion_ratio, |
|
device=device, |
|
bias=not no_bias, |
|
**ffn_config, |
|
) |
|
self.resid_attn_dropout = nn.Dropout(resid_pdrop) |
|
self.resid_ffn_dropout = nn.Dropout(resid_pdrop) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
is_causal: bool = True, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[ |
|
torch.Tensor, torch.Tensor]]]: |
|
a = self.norm_1(x) |
|
b, attn_weights, past_key_value = self.attn( |
|
a, |
|
past_key_value=past_key_value, |
|
attn_bias=attn_bias, |
|
attention_mask=attention_mask, |
|
is_causal=is_causal, |
|
needs_weights=output_attentions, |
|
) |
|
x = x + self.resid_attn_dropout(b) |
|
m = x |
|
if self.norm_2 is not None: |
|
m = self.norm_2(x) |
|
n = self.ffn(m) |
|
x = x + self.resid_ffn_dropout(n) |
|
return x, attn_weights, past_key_value |
|
|