|
|
|
|
|
|
|
from typing import Dict, List, Optional, Type, Union |
|
|
|
import torch |
|
|
|
|
|
def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor: |
|
if torch.is_autocast_enabled(): |
|
if tensor.device.type == 'cuda': |
|
dtype = torch.get_autocast_gpu_dtype() |
|
elif tensor.device.type == 'cpu': |
|
dtype = torch.get_autocast_cpu_dtype() |
|
else: |
|
raise NotImplementedError() |
|
return tensor.to(dtype=dtype) |
|
return tensor |
|
|
|
|
|
class LPLayerNorm(torch.nn.LayerNorm): |
|
|
|
def __init__( |
|
self, |
|
normalized_shape: Union[int, List[int], torch.Size], |
|
eps: float = 1e-05, |
|
elementwise_affine: bool = True, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
super().__init__( |
|
normalized_shape=normalized_shape, |
|
eps=eps, |
|
elementwise_affine=elementwise_affine, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
module_device = x.device |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = _cast_if_autocast_enabled( |
|
self.weight) if self.weight is not None else self.weight |
|
downcast_bias = _cast_if_autocast_enabled( |
|
self.bias) if self.bias is not None else self.bias |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return torch.nn.functional.layer_norm( |
|
downcast_x, |
|
self.normalized_shape, |
|
downcast_weight, |
|
downcast_bias, |
|
self.eps, |
|
) |
|
|
|
|
|
def rms_norm(x: torch.Tensor, |
|
weight: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5) -> torch.Tensor: |
|
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) |
|
if weight is not None: |
|
return output * weight |
|
return output |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
|
|
def __init__( |
|
self, |
|
normalized_shape: Union[int, List[int], torch.Size], |
|
eps: float = 1e-5, |
|
weight: bool = True, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
): |
|
super().__init__() |
|
self.eps = eps |
|
if weight: |
|
self.weight = torch.nn.Parameter( |
|
torch.ones(normalized_shape, dtype=dtype, device=device)) |
|
else: |
|
self.register_parameter('weight', None) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) |
|
|
|
|
|
class LPRMSNorm(RMSNorm): |
|
|
|
def __init__( |
|
self, |
|
normalized_shape: Union[int, List[int], torch.Size], |
|
eps: float = 1e-5, |
|
weight: bool = True, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
): |
|
super().__init__( |
|
normalized_shape=normalized_shape, |
|
eps=eps, |
|
weight=weight, |
|
dtype=dtype, |
|
device=device, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = _cast_if_autocast_enabled( |
|
self.weight) if self.weight is not None else self.weight |
|
with torch.autocast(enabled=False, device_type=x.device.type): |
|
return rms_norm(downcast_x, downcast_weight, |
|
self.eps).to(dtype=x.dtype) |
|
|
|
|
|
NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = { |
|
'layernorm': torch.nn.LayerNorm, |
|
'low_precision_layernorm': LPLayerNorm, |
|
'rmsnorm': RMSNorm, |
|
'low_precision_rmsnorm': LPRMSNorm, |
|
} |
|
|