crystal-technologies's picture
Upload 303 files
de4ade4
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
"""A simple, flexible implementation of a GPT model.
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
"""
import math
import warnings
from typing import (Any, Dict, List, Mapping, MutableMapping, Optional, Tuple,
Union)
import torch
import torch.nn as nn
import torch.nn.functional as F
from composer.metrics import (InContextLearningCodeEvalAccuracy,
InContextLearningLMAccuracy,
InContextLearningLMExpectedCalibrationError,
InContextLearningMCExpectedCalibrationError,
InContextLearningMultipleChoiceAccuracy,
InContextLearningQAAccuracy)
from composer.metrics.nlp import LanguageCrossEntropy, LanguagePerplexity
from composer.models import HuggingFaceModel
from composer.utils import dist
from omegaconf import DictConfig
from omegaconf import OmegaConf as om
from transformers import PreTrainedModel, PreTrainedTokenizerBase
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from llmfoundry.models.layers.attention import attn_bias_shape, build_attn_bias
from llmfoundry.models.layers.blocks import MPTBlock
from llmfoundry.models.layers.custom_embedding import SharedEmbedding
from llmfoundry.models.layers.fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
from llmfoundry.models.layers.ffn import \
FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
from llmfoundry.models.layers.ffn import MPTMLP as MPTMLP
from llmfoundry.models.layers.ffn import build_ffn as build_ffn
from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY
from llmfoundry.models.mpt.configuration_mpt import MPTConfig
# NOTE: All utils are imported directly even if unused so that
# HuggingFace can detect all the needed files to copy into its modules folder.
# Otherwise, certain modules are missing.
# isort: off
from llmfoundry.models.utils.adapt_tokenizer import (
AutoTokenizerForMOD, # type: ignore (see note),
adapt_tokenizer_for_denoising, # type: ignore (see note)
)
from llmfoundry.models.utils.hf_prefixlm_converter import (
add_bidirectional_mask_if_missing, # type: ignore (see note)
convert_hf_causal_lm_to_prefix_lm, # type: ignore (see note)
)
from llmfoundry.models.utils.meta_init_context import \
init_empty_weights # type: ignore (see note)
from llmfoundry.models.utils.param_init_fns import (
generic_param_init_fn_, # type: ignore (see note)
MODEL_INIT_REGISTRY,
)
try:
from llmfoundry.models.layers.flash_attn_triton import flash_attn_func as flash_attn_func
except:
pass
# isort: on
import logging
log = logging.getLogger(__name__)
class MPTPreTrainedModel(PreTrainedModel):
config_class = MPTConfig
base_model_prefix = 'model'
_no_split_modules = ['MPTBlock']
class MPTModel(MPTPreTrainedModel):
def __init__(self, config: MPTConfig):
config._validate_config()
super().__init__(config)
self.attn_impl = config.attn_config['attn_impl']
self.prefix_lm = config.attn_config['prefix_lm']
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
self.alibi = config.attn_config['alibi']
self.alibi_bias_max = config.attn_config['alibi_bias_max']
self.learned_pos_emb = config.learned_pos_emb
if config.init_device == 'mixed':
if dist.get_local_rank() == 0:
config.init_device = 'cpu'
else:
config.init_device = 'meta'
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
raise NotImplementedError(
f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).'
)
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
# CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414)
# both report this helping with stabilizing training
self.embedding_fraction = config.embedding_fraction
self.wte = SharedEmbedding(config.vocab_size,
config.d_model,
device=config.init_device)
if self.learned_pos_emb:
self.wpe = torch.nn.Embedding(config.max_seq_len,
config.d_model,
device=config.init_device)
self.emb_drop = nn.Dropout(config.emb_pdrop)
self.blocks = nn.ModuleList([
MPTBlock(
device=config.init_device,
**config.to_dict(),
) for _ in range(config.n_layers)
])
self.norm_f = norm_class(config.d_model, device=config.init_device)
if config.init_device != 'meta':
log.info(
f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.'
)
self.apply(self.param_init_fn)
self.is_causal = not self.prefix_lm
# define attn mask
self._attn_bias_initialized = False
self.attn_bias = None
self.attn_bias_shape = attn_bias_shape(
self.attn_impl,
config.n_heads,
config.max_seq_len,
self.alibi,
prefix_lm=self.prefix_lm,
causal=self.is_causal,
use_sequence_id=self.attn_uses_sequence_id,
)
if config.no_bias:
for module in self.modules():
if hasattr(module, 'bias') and isinstance(
module.bias, nn.Parameter):
log.info(f'Removing bias ({module.bias}) from {module}.')
module.register_parameter('bias', None)
# For transformer engine
if hasattr(module, 'use_bias'):
log.info(f'Setting use_bias=False for {module}.')
module.use_bias = False
log.debug(self)
log.debug(f'Using {self.config.init_config["name"]} initialization.')
def get_input_embeddings(self) -> nn.Embedding:
return self.wte
def set_input_embeddings(self, value: nn.Embedding) -> None:
self.wte = value
@torch.no_grad()
def _attn_bias(
self,
device: torch.device,
dtype: torch.dtype,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None,
) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
if not self._attn_bias_initialized:
if self.attn_bias_shape:
self.attn_bias = torch.zeros(self.attn_bias_shape,
device=device,
dtype=dtype)
self.attn_bias = build_attn_bias(
self.attn_impl,
self.attn_bias,
self.config.n_heads,
self.config.max_seq_len,
causal=self.is_causal,
alibi=self.alibi,
alibi_bias_max=self.alibi_bias_max,
)
self._attn_bias_initialized = True
# flash does not support prefix_lm and will incorporate any
# attention_mask inside the attention module
if self.attn_impl == 'flash':
return self.attn_bias, attention_mask
if self.attn_bias is not None:
# .to(*args, **kwargs) is a no-op if tensor is already on
# specified device or of specified dtype
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
attn_bias = self.attn_bias
# If using torch or triton, we incorporate the prefix_mask (if appropriate)
if self.prefix_lm:
assert isinstance(attn_bias, torch.Tensor) # pyright
assert isinstance(prefix_mask, torch.Tensor) # pyright
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
# If using torch or triton, we incorporate sequence_id (if appropriate)
if self.attn_uses_sequence_id and sequence_id is not None:
assert isinstance(attn_bias, torch.Tensor) # pyright
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
# If using torch or triton, we incorporate attention_mask. This will output
# None in place of attention_mask since it will not be further needed in the
# attention modules.
if attention_mask is not None:
s_k = attention_mask.shape[-1]
if attn_bias is None:
attn_bias = torch.zeros((1, 1, 1, s_k),
device=device,
dtype=dtype)
else:
# clamp to 0 necessary for torch 2.0 compile()
_s_k = max(0, attn_bias.size(-1) - s_k)
attn_bias = attn_bias[:, :, :, _s_k:]
if prefix_mask is not None and (attention_mask.shape !=
prefix_mask.shape):
raise ValueError(
f'attention_mask shape={attention_mask.shape} ' +
f'and prefix_mask shape={prefix_mask.shape} are not equal.')
min_val = torch.finfo(attn_bias.dtype).min
attn_bias = attn_bias.masked_fill(
~attention_mask.view(-1, 1, 1, s_k), min_val)
return attn_bias, None
def _apply_prefix_mask(self, attn_bias: torch.Tensor,
prefix_mask: torch.Tensor) -> torch.Tensor:
s_k, s_q = attn_bias.shape[-2:]
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len):
raise ValueError(
'attn_bias does not match the expected shape. ' +
f'The last two dimensions should both be {self.config.max_length} '
+ f'but are {s_k} and {s_q}.')
seq_len = prefix_mask.shape[-1]
if seq_len > self.config.max_seq_len:
raise ValueError(
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
)
# select seq_len subset of attn mask
attn_bias = attn_bias[..., :seq_len, :seq_len]
# Mix the causal max and the bidirectional mask to get the full
# allowable attention (i.e. full = not accounting for padding yet)
causal = torch.tril(
torch.ones((seq_len, seq_len),
dtype=torch.bool,
device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
prefix = prefix_mask.view(-1, 1, 1, seq_len)
cannot_attend = ~torch.logical_or(causal, prefix.bool())
min_val = torch.finfo(attn_bias.dtype).min
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
return attn_bias
def _apply_sequence_id(self, attn_bias: torch.Tensor,
sequence_id: torch.LongTensor) -> torch.Tensor:
seq_len = sequence_id.shape[-1]
if seq_len > self.config.max_seq_len:
raise ValueError(
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
)
# select seq_len subset of attn mask
attn_bias = attn_bias[..., :seq_len, :seq_len]
# Restrict attention to tokens that share the same value
# in sequence_id
cannot_attend = torch.logical_not(
torch.eq(
sequence_id.view(-1, seq_len, 1),
sequence_id.view(-1, 1, seq_len),
)).unsqueeze(1)
min_val = torch.finfo(attn_bias.dtype).min
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
return attn_bias
def forward(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> BaseModelOutputWithPast:
return_dict = (return_dict
if return_dict is not None else self.config.return_dict)
use_cache = (use_cache
if use_cache is not None else self.config.use_cache)
if attention_mask is not None:
attention_mask = attention_mask.bool() # type: ignore
if prefix_mask is not None:
prefix_mask = prefix_mask.bool() # type: ignore
# These args are passed in by keyword in huggingface's generate function
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206
# but have not yet been fully implemented in MPTModel
if not return_dict:
raise NotImplementedError(
'return_dict False is not implemented yet for MPT')
if output_attentions:
if self.attn_impl != 'torch':
raise NotImplementedError(
'output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.'
)
if (self.training and attention_mask is not None and
attention_mask[:, 0].sum() != attention_mask.shape[0]):
raise NotImplementedError(
'MPT does not support training with left padding.')
if self.prefix_lm and prefix_mask is None:
raise ValueError(
'prefix_mask is a required argument when MPT is configured with prefix_lm=True.'
)
# Raise a not implemented error if input_embeds is not None (this is an arg in huggingface transformers and we need to support it for PEFT)
if inputs_embeds is not None:
raise NotImplementedError(
'inputs_embeds is not implemented for MPT.')
if self.training:
if self.attn_uses_sequence_id and sequence_id is None:
raise ValueError(
'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True '
+ 'and the model is in train mode.')
elif (self.attn_uses_sequence_id is False) and (sequence_id
is not None):
warnings.warn(
'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. '
+
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.'
)
S = input_ids.size(1)
assert (
S <= self.config.max_seq_len
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
tok_emb = self.wte(input_ids)
if self.learned_pos_emb:
past_position = 0
if past_key_values is not None:
if len(past_key_values) != self.config.n_layers:
raise ValueError(
f'past_key_values must provide a past_key_value for each attention '
+
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).'
)
# For attn_impl: triton and flash the past key tensor spec is (batch, seq, dim).
# For attn_impl: torch the past key tensor spec is (batch, heads, head_dim, seq).
# Here we shift position embedding using the `seq` dim of the past key
past_position = past_key_values[0][0].size(1)
if self.attn_impl == 'torch':
past_position = past_key_values[0][0].size(3)
if S + past_position > self.config.max_seq_len:
raise ValueError(
f'Cannot forward input with past sequence length {past_position} and current sequence length '
+
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.'
)
pos = torch.arange(
past_position,
S + past_position,
dtype=torch.long,
device=input_ids.device,
).unsqueeze(0)
if attention_mask is not None:
# adjust the position indices to account for padding tokens
pos = torch.clamp(
pos - torch.cumsum((~attention_mask).to(torch.int32),
dim=1)[:, past_position:],
min=0,
)
pos_emb = self.wpe(pos)
x = tok_emb + pos_emb
else:
# ALiBi and NoPE use this path (RoPE will also use this path if / when enabled)
x = tok_emb
if self.embedding_fraction == 1:
x = self.emb_drop(x)
else:
# this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414
x_shrunk = (x * self.embedding_fraction) + (
x.detach() * (1 - self.embedding_fraction))
assert isinstance(self.emb_drop, nn.Module) # pyright
x = self.emb_drop(x_shrunk)
attn_bias, attention_mask = self._attn_bias(
device=x.device,
dtype=torch.float32,
attention_mask=attention_mask,
prefix_mask=prefix_mask,
sequence_id=sequence_id,
)
# initialize the past key values cache if it should be used
presents = () if use_cache else None
if use_cache and past_key_values is None:
past_key_values = [() for _ in range(self.config.n_layers)
] # type: ignore
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for b_idx, block in enumerate(self.blocks):
if output_hidden_states:
assert all_hidden_states is not None # pyright
all_hidden_states = all_hidden_states + (x,)
past_key_value = (past_key_values[b_idx]
if past_key_values is not None else None)
x, attn_weights, present = block(
x,
past_key_value=past_key_value,
attn_bias=attn_bias,
attention_mask=attention_mask,
is_causal=self.is_causal,
output_attentions=bool(output_attentions),
)
if presents is not None:
presents += (present,)
if output_attentions:
assert all_self_attns is not None # pyright
all_self_attns = all_self_attns + (attn_weights,)
x = self.norm_f(x)
# add hidden states from the last decoder layer
if output_hidden_states:
assert all_hidden_states is not None # pyright
all_hidden_states = all_hidden_states + (x,)
return BaseModelOutputWithPast(
last_hidden_state=x,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Param Initialization, needed for device='meta' fast initialization
def param_init_fn(self, module: nn.Module) -> None:
init_fn_name = self.config.init_config['name']
MODEL_INIT_REGISTRY[init_fn_name](
module=module,
n_layers=self.config.n_layers,
d_model=self.config.d_model,
**self.config.init_config,
)
# FSDP Wrap function
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
return isinstance(module, MPTBlock)
# Activation Checkpointing
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
return isinstance(module, MPTBlock)
class MPTForCausalLM(MPTPreTrainedModel):
def __init__(self, config: MPTConfig):
super().__init__(config)
if not config.tie_word_embeddings:
raise ValueError(
'MPTForCausalLM only supports tied word embeddings')
log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
self.transformer: MPTModel = MPTModel(config)
for child in self.transformer.children():
if isinstance(child, torch.nn.ModuleList):
continue
if isinstance(child, torch.nn.Module):
child._fsdp_wrap = True
# enables scaling output logits; similar to a softmax "temperature"
# PaLM paper uses scale 1/sqrt(config.d_model)
self.logit_scale = None
if config.logit_scale is not None:
logit_scale = config.logit_scale
if isinstance(logit_scale, str):
if logit_scale == 'inv_sqrt_d_model':
logit_scale = 1 / math.sqrt(config.d_model)
else:
raise ValueError(
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
)
self.logit_scale = logit_scale
def get_input_embeddings(self) -> nn.Embedding:
return self.transformer.wte
def set_input_embeddings(
self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
self.transformer.wte = value
def get_output_embeddings(self) -> nn.Embedding:
return self.transformer.wte
def set_output_embeddings(
self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None:
self.transformer.wte = new_embeddings
def set_decoder(self, decoder: MPTModel) -> None:
self.transformer = decoder
def get_decoder(self) -> MPTModel:
return self.transformer
def forward(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> CausalLMOutputWithPast:
return_dict = (return_dict
if return_dict is not None else self.config.return_dict)
use_cache = (use_cache
if use_cache is not None else self.config.use_cache)
# if input_embeds is not none, raise a not implemented error
if inputs_embeds is not None:
raise NotImplementedError(
'inputs_embeds has to be None (for hf/peft support).')
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
prefix_mask=prefix_mask,
sequence_id=sequence_id,
return_dict=return_dict,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
)
# move outputs to same device as weights for token embedding
# needed to support HF `device_map`
logits = self.transformer.wte(
outputs.last_hidden_state.to(self.transformer.wte.weight.device),
True,
)
if self.logit_scale is not None:
if self.logit_scale == 0:
warnings.warn(
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.'
)
logits *= self.logit_scale
loss = None
if labels is not None:
_labels = torch.roll(labels, shifts=-1)
_labels[:, -1] = -100
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)),
_labels.to(logits.device).view(-1),
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Param Initialization, needed for device='meta' fast initialization
def param_init_fn(self, module: nn.Module) -> None:
init_fn_name = self.config.init_config['name']
MODEL_INIT_REGISTRY[init_fn_name](
module=module,
n_layers=self.config.n_layers,
d_model=self.config.d_model,
**self.config.init_config,
)
# FSDP Wrap function
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
return isinstance(module, MPTBlock)
# Activation Checkpointing
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
return isinstance(module, MPTBlock)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[List[Tuple[torch.Tensor,
torch.Tensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Any,
) -> Dict[str, Any]:
if inputs_embeds is not None:
raise NotImplementedError(
'inputs_embeds is not implemented for MPT yet')
attention_mask = kwargs['attention_mask'].bool()
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
raise NotImplementedError(
'MPT does not support generation with right padding.')
if self.transformer.attn_uses_sequence_id and self.training:
sequence_id = torch.zeros_like(input_ids[:1])
else:
sequence_id = None
if past_key_values is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if self.transformer.prefix_lm:
# Leverage a convenience of sequential generation!
prefix_mask = torch.ones_like(attention_mask)
# This requires that we're using the cache
if kwargs.get('use_cache') == False:
raise NotImplementedError(
'MPT with prefix_lm=True does not support use_cache=False.')
else:
prefix_mask = None
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'prefix_mask': prefix_mask,
'sequence_id': sequence_id,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache', True),
}
@staticmethod
def _reorder_cache(
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
"""Used by HuggingFace generate when using beam search with kv-caching.
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
for an example in transformers.
"""
reordered_past = []
for layer_past in past_key_values:
reordered_past += [
tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past)
]
return reordered_past
class ComposerMPTCausalLM(HuggingFaceModel):
def __init__(
self,
om_model_config: DictConfig,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
):
resolved_om_model_config = om.to_container(om_model_config,
resolve=True)
hf_config = MPTConfig.from_dict(resolved_om_model_config)
model = MPTForCausalLM(hf_config)
use_train_metrics = om_model_config.get('use_train_metrics', True)
train_metrics = [LanguageCrossEntropy(),
LanguagePerplexity()] if use_train_metrics else []
eval_metrics = [
LanguageCrossEntropy(),
LanguagePerplexity(),
InContextLearningLMAccuracy(),
InContextLearningMultipleChoiceAccuracy(),
InContextLearningQAAccuracy(),
InContextLearningCodeEvalAccuracy(),
InContextLearningLMExpectedCalibrationError(),
InContextLearningMCExpectedCalibrationError(),
]
super().__init__(
model=model,
tokenizer=tokenizer,
use_logits=True,
metrics=train_metrics,
eval_metrics=eval_metrics,
shift_labels=True,
allow_embedding_resizing=True,
)
self.n_active_params = sum(p.numel() for p in self.parameters())
loss_fn_config = om_model_config.get('loss_fn', 'fused_crossentropy')
if loss_fn_config == 'fused_crossentropy':
try:
from flash_attn.losses.cross_entropy import \
CrossEntropyLoss as FusedCrossEntropyLoss
self.loss_fn = FusedCrossEntropyLoss(ignore_index=-100)
except:
raise ValueError(
'Fused Cross Entropy is not installed. Either (1) have a CUDA-compatible GPU '
+
'and `pip install .[gpu]` if installing from source or `pip install xentropy-cuda-lib@git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/xentropy` '
+
'if installing from pypi, or (2) set your config model.loss_fn=torch_crossentropy.'
)
elif loss_fn_config == 'torch_crossentropy':
self.loss_fn = nn.CrossEntropyLoss(ignore_index=-100)
else:
raise ValueError(
f'Specified loss_fn={self.loss_fn} not recognized. `loss_fn` must be one of [`fused_crossentropy`, `torch_crossentropy`].'
)
def get_targets(self, batch: Mapping) -> torch.Tensor:
targets = torch.roll(batch['labels'], shifts=-1)
targets[:, -1] = -100
return targets
def forward(self, batch: MutableMapping) -> CausalLMOutputWithPast:
if self.model.transformer.prefix_lm:
add_bidirectional_mask_if_missing(batch)
# Note: prefix_mask is only used if model.prefix_lm is True
return self.model(
input_ids=batch['input_ids'],
attention_mask=batch.get('attention_mask', None),
prefix_mask=batch.get('bidirectional_mask', None),
sequence_id=batch.get('sequence_id', None),
inputs_embeds=batch.get('inputs_embeds', None),
)
def loss(self, outputs: CausalLMOutputWithPast,
batch: Mapping) -> torch.Tensor:
targets = self.get_targets(batch)
return self.loss_fn(outputs.logits.view(-1, outputs.logits.size(-1)),
targets.view(-1))
def flops_per_batch(self, batch: Mapping) -> int:
# Note: this computation does not take into account padding, and assumes
# that the dataset has been constructed without padding. Additionally, we
# assume the backward pass is approximately 2x the forward pass
bs, msl = batch['input_ids'].shape[0:2]
params_flops_per_token = 2 * self.n_active_params
params_flops_per_seq = params_flops_per_token * msl
attn_flops_per_seq = (self.model.config.n_layers * 2 * 2 *
(self.model.config.d_model * (msl**2)))
return (params_flops_per_seq + attn_flops_per_seq) * 3 * bs