|
|
|
|
|
|
|
"""A simple, flexible implementation of a GPT model. |
|
|
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py |
|
""" |
|
|
|
import math |
|
import warnings |
|
from typing import (Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, |
|
Union) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from composer.metrics import (InContextLearningCodeEvalAccuracy, |
|
InContextLearningLMAccuracy, |
|
InContextLearningLMExpectedCalibrationError, |
|
InContextLearningMCExpectedCalibrationError, |
|
InContextLearningMultipleChoiceAccuracy, |
|
InContextLearningQAAccuracy) |
|
from composer.metrics.nlp import LanguageCrossEntropy, LanguagePerplexity |
|
from composer.models import HuggingFaceModel |
|
from composer.utils import dist |
|
from omegaconf import DictConfig |
|
from omegaconf import OmegaConf as om |
|
from transformers import PreTrainedModel, PreTrainedTokenizerBase |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast) |
|
|
|
from llmfoundry.models.layers.attention import attn_bias_shape, build_attn_bias |
|
from llmfoundry.models.layers.blocks import MPTBlock |
|
from llmfoundry.models.layers.custom_embedding import SharedEmbedding |
|
from llmfoundry.models.layers.fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY |
|
from llmfoundry.models.layers.ffn import \ |
|
FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY |
|
from llmfoundry.models.layers.ffn import MPTMLP as MPTMLP |
|
from llmfoundry.models.layers.ffn import build_ffn as build_ffn |
|
from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY |
|
from llmfoundry.models.mpt.configuration_mpt import MPTConfig |
|
|
|
|
|
|
|
|
|
|
|
from llmfoundry.models.utils.adapt_tokenizer import ( |
|
AutoTokenizerForMOD, |
|
adapt_tokenizer_for_denoising, |
|
) |
|
from llmfoundry.models.utils.hf_prefixlm_converter import ( |
|
add_bidirectional_mask_if_missing, |
|
convert_hf_causal_lm_to_prefix_lm, |
|
) |
|
from llmfoundry.models.utils.meta_init_context import \ |
|
init_empty_weights |
|
from llmfoundry.models.utils.param_init_fns import ( |
|
generic_param_init_fn_, |
|
MODEL_INIT_REGISTRY, |
|
) |
|
|
|
try: |
|
from llmfoundry.models.layers.flash_attn_triton import flash_attn_func as flash_attn_func |
|
except: |
|
pass |
|
|
|
|
|
import logging |
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
class MPTPreTrainedModel(PreTrainedModel): |
|
config_class = MPTConfig |
|
base_model_prefix = 'model' |
|
_no_split_modules = ['MPTBlock'] |
|
|
|
|
|
class MPTModel(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: MPTConfig): |
|
config._validate_config() |
|
super().__init__(config) |
|
|
|
self.attn_impl = config.attn_config['attn_impl'] |
|
self.prefix_lm = config.attn_config['prefix_lm'] |
|
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] |
|
self.alibi = config.attn_config['alibi'] |
|
self.alibi_bias_max = config.attn_config['alibi_bias_max'] |
|
|
|
self.learned_pos_emb = config.learned_pos_emb |
|
|
|
if config.init_device == 'mixed': |
|
if dist.get_local_rank() == 0: |
|
config.init_device = 'cpu' |
|
else: |
|
config.init_device = 'meta' |
|
|
|
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): |
|
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) |
|
raise NotImplementedError( |
|
f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).' |
|
) |
|
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] |
|
|
|
|
|
|
|
self.embedding_fraction = config.embedding_fraction |
|
|
|
self.wte = SharedEmbedding(config.vocab_size, |
|
config.d_model, |
|
device=config.init_device) |
|
if self.learned_pos_emb: |
|
self.wpe = torch.nn.Embedding(config.max_seq_len, |
|
config.d_model, |
|
device=config.init_device) |
|
self.emb_drop = nn.Dropout(config.emb_pdrop) |
|
self.blocks = nn.ModuleList([ |
|
MPTBlock( |
|
device=config.init_device, |
|
**config.to_dict(), |
|
) for _ in range(config.n_layers) |
|
]) |
|
self.norm_f = norm_class(config.d_model, device=config.init_device) |
|
|
|
if config.init_device != 'meta': |
|
log.info( |
|
f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.' |
|
) |
|
self.apply(self.param_init_fn) |
|
|
|
self.is_causal = not self.prefix_lm |
|
|
|
|
|
self._attn_bias_initialized = False |
|
self.attn_bias = None |
|
self.attn_bias_shape = attn_bias_shape( |
|
self.attn_impl, |
|
config.n_heads, |
|
config.max_seq_len, |
|
self.alibi, |
|
prefix_lm=self.prefix_lm, |
|
causal=self.is_causal, |
|
use_sequence_id=self.attn_uses_sequence_id, |
|
) |
|
|
|
if config.no_bias: |
|
for module in self.modules(): |
|
if hasattr(module, 'bias') and isinstance( |
|
module.bias, nn.Parameter): |
|
log.info(f'Removing bias ({module.bias}) from {module}.') |
|
module.register_parameter('bias', None) |
|
|
|
|
|
if hasattr(module, 'use_bias'): |
|
log.info(f'Setting use_bias=False for {module}.') |
|
module.use_bias = False |
|
|
|
log.debug(self) |
|
log.debug(f'Using {self.config.init_config["name"]} initialization.') |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value: nn.Embedding) -> None: |
|
self.wte = value |
|
|
|
@torch.no_grad() |
|
def _attn_bias( |
|
self, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]: |
|
if not self._attn_bias_initialized: |
|
if self.attn_bias_shape: |
|
self.attn_bias = torch.zeros(self.attn_bias_shape, |
|
device=device, |
|
dtype=dtype) |
|
self.attn_bias = build_attn_bias( |
|
self.attn_impl, |
|
self.attn_bias, |
|
self.config.n_heads, |
|
self.config.max_seq_len, |
|
causal=self.is_causal, |
|
alibi=self.alibi, |
|
alibi_bias_max=self.alibi_bias_max, |
|
) |
|
self._attn_bias_initialized = True |
|
|
|
|
|
|
|
if self.attn_impl == 'flash': |
|
return self.attn_bias, attention_mask |
|
|
|
if self.attn_bias is not None: |
|
|
|
|
|
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) |
|
|
|
attn_bias = self.attn_bias |
|
|
|
|
|
if self.prefix_lm: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
assert isinstance(prefix_mask, torch.Tensor) |
|
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) |
|
|
|
|
|
if self.attn_uses_sequence_id and sequence_id is not None: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
attn_bias = self._apply_sequence_id(attn_bias, sequence_id) |
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
s_k = attention_mask.shape[-1] |
|
if attn_bias is None: |
|
attn_bias = torch.zeros((1, 1, 1, s_k), |
|
device=device, |
|
dtype=dtype) |
|
else: |
|
|
|
_s_k = max(0, attn_bias.size(-1) - s_k) |
|
attn_bias = attn_bias[:, :, :, _s_k:] |
|
if prefix_mask is not None and (attention_mask.shape != |
|
prefix_mask.shape): |
|
raise ValueError( |
|
f'attention_mask shape={attention_mask.shape} ' + |
|
f'and prefix_mask shape={prefix_mask.shape} are not equal.') |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill( |
|
~attention_mask.view(-1, 1, 1, s_k), min_val) |
|
|
|
return attn_bias, None |
|
|
|
def _apply_prefix_mask(self, attn_bias: torch.Tensor, |
|
prefix_mask: torch.Tensor) -> torch.Tensor: |
|
s_k, s_q = attn_bias.shape[-2:] |
|
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len): |
|
raise ValueError( |
|
'attn_bias does not match the expected shape. ' + |
|
f'The last two dimensions should both be {self.config.max_length} ' |
|
+ f'but are {s_k} and {s_q}.') |
|
seq_len = prefix_mask.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}' |
|
) |
|
|
|
|
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
|
|
|
|
|
|
causal = torch.tril( |
|
torch.ones((seq_len, seq_len), |
|
dtype=torch.bool, |
|
device=prefix_mask.device)).view(1, 1, seq_len, seq_len) |
|
prefix = prefix_mask.view(-1, 1, 1, seq_len) |
|
cannot_attend = ~torch.logical_or(causal, prefix.bool()) |
|
|
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
|
|
return attn_bias |
|
|
|
def _apply_sequence_id(self, attn_bias: torch.Tensor, |
|
sequence_id: torch.LongTensor) -> torch.Tensor: |
|
seq_len = sequence_id.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}' |
|
) |
|
|
|
|
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
|
|
|
|
|
|
cannot_attend = torch.logical_not( |
|
torch.eq( |
|
sequence_id.view(-1, seq_len, 1), |
|
sequence_id.view(-1, 1, seq_len), |
|
)).unsqueeze(1) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
|
|
return attn_bias |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> BaseModelOutputWithPast: |
|
return_dict = (return_dict |
|
if return_dict is not None else self.config.return_dict) |
|
use_cache = (use_cache |
|
if use_cache is not None else self.config.use_cache) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool() |
|
|
|
if prefix_mask is not None: |
|
prefix_mask = prefix_mask.bool() |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
raise NotImplementedError( |
|
'return_dict False is not implemented yet for MPT') |
|
if output_attentions: |
|
if self.attn_impl != 'torch': |
|
raise NotImplementedError( |
|
'output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.' |
|
) |
|
|
|
if (self.training and attention_mask is not None and |
|
attention_mask[:, 0].sum() != attention_mask.shape[0]): |
|
raise NotImplementedError( |
|
'MPT does not support training with left padding.') |
|
|
|
if self.prefix_lm and prefix_mask is None: |
|
raise ValueError( |
|
'prefix_mask is a required argument when MPT is configured with prefix_lm=True.' |
|
) |
|
|
|
|
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds is not implemented for MPT.') |
|
|
|
if self.training: |
|
if self.attn_uses_sequence_id and sequence_id is None: |
|
raise ValueError( |
|
'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' |
|
+ 'and the model is in train mode.') |
|
elif (self.attn_uses_sequence_id is False) and (sequence_id |
|
is not None): |
|
warnings.warn( |
|
'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' |
|
+ |
|
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.' |
|
) |
|
|
|
S = input_ids.size(1) |
|
|
|
assert ( |
|
S <= self.config.max_seq_len |
|
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' |
|
|
|
tok_emb = self.wte(input_ids) |
|
if self.learned_pos_emb: |
|
past_position = 0 |
|
if past_key_values is not None: |
|
if len(past_key_values) != self.config.n_layers: |
|
raise ValueError( |
|
f'past_key_values must provide a past_key_value for each attention ' |
|
+ |
|
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).' |
|
) |
|
|
|
|
|
|
|
past_position = past_key_values[0][0].size(1) |
|
if self.attn_impl == 'torch': |
|
past_position = past_key_values[0][0].size(3) |
|
|
|
if S + past_position > self.config.max_seq_len: |
|
raise ValueError( |
|
f'Cannot forward input with past sequence length {past_position} and current sequence length ' |
|
+ |
|
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.' |
|
) |
|
pos = torch.arange( |
|
past_position, |
|
S + past_position, |
|
dtype=torch.long, |
|
device=input_ids.device, |
|
).unsqueeze(0) |
|
if attention_mask is not None: |
|
|
|
pos = torch.clamp( |
|
pos - torch.cumsum((~attention_mask).to(torch.int32), |
|
dim=1)[:, past_position:], |
|
min=0, |
|
) |
|
|
|
pos_emb = self.wpe(pos) |
|
x = tok_emb + pos_emb |
|
else: |
|
|
|
x = tok_emb |
|
|
|
if self.embedding_fraction == 1: |
|
x = self.emb_drop(x) |
|
else: |
|
|
|
x_shrunk = (x * self.embedding_fraction) + ( |
|
x.detach() * (1 - self.embedding_fraction)) |
|
assert isinstance(self.emb_drop, nn.Module) |
|
x = self.emb_drop(x_shrunk) |
|
|
|
attn_bias, attention_mask = self._attn_bias( |
|
device=x.device, |
|
dtype=torch.float32, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
) |
|
|
|
|
|
presents = () if use_cache else None |
|
if use_cache and past_key_values is None: |
|
past_key_values = [() for _ in range(self.config.n_layers) |
|
] |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
for b_idx, block in enumerate(self.blocks): |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
past_key_value = (past_key_values[b_idx] |
|
if past_key_values is not None else None) |
|
x, attn_weights, present = block( |
|
x, |
|
past_key_value=past_key_value, |
|
attn_bias=attn_bias, |
|
attention_mask=attention_mask, |
|
is_causal=self.is_causal, |
|
output_attentions=bool(output_attentions), |
|
) |
|
if presents is not None: |
|
presents += (present,) |
|
|
|
if output_attentions: |
|
assert all_self_attns is not None |
|
all_self_attns = all_self_attns + (attn_weights,) |
|
|
|
x = self.norm_f(x) |
|
|
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=x, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
def param_init_fn(self, module: nn.Module) -> None: |
|
init_fn_name = self.config.init_config['name'] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
|
|
def fsdp_wrap_fn(self, module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
def activation_checkpointing_fn(self, module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
class MPTForCausalLM(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: MPTConfig): |
|
super().__init__(config) |
|
if not config.tie_word_embeddings: |
|
raise ValueError( |
|
'MPTForCausalLM only supports tied word embeddings') |
|
|
|
log.info(f'Instantiating an MPTForCausalLM model from {__file__}') |
|
|
|
self.transformer: MPTModel = MPTModel(config) |
|
|
|
for child in self.transformer.children(): |
|
if isinstance(child, torch.nn.ModuleList): |
|
continue |
|
if isinstance(child, torch.nn.Module): |
|
child._fsdp_wrap = True |
|
|
|
|
|
|
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == 'inv_sqrt_d_model': |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError( |
|
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." |
|
) |
|
self.logit_scale = logit_scale |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.transformer.wte |
|
|
|
def set_input_embeddings( |
|
self, value: Union[SharedEmbedding, nn.Embedding]) -> None: |
|
self.transformer.wte = value |
|
|
|
def get_output_embeddings(self) -> nn.Embedding: |
|
return self.transformer.wte |
|
|
|
def set_output_embeddings( |
|
self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None: |
|
self.transformer.wte = new_embeddings |
|
|
|
def set_decoder(self, decoder: MPTModel) -> None: |
|
self.transformer = decoder |
|
|
|
def get_decoder(self) -> MPTModel: |
|
return self.transformer |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
) -> CausalLMOutputWithPast: |
|
return_dict = (return_dict |
|
if return_dict is not None else self.config.return_dict) |
|
use_cache = (use_cache |
|
if use_cache is not None else self.config.use_cache) |
|
|
|
|
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds has to be None (for hf/peft support).') |
|
|
|
outputs = self.transformer( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
return_dict=return_dict, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=use_cache, |
|
) |
|
|
|
|
|
|
|
logits = self.transformer.wte( |
|
outputs.last_hidden_state.to(self.transformer.wte.weight.device), |
|
True, |
|
) |
|
|
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn( |
|
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.' |
|
) |
|
logits *= self.logit_scale |
|
|
|
loss = None |
|
if labels is not None: |
|
_labels = torch.roll(labels, shifts=-1) |
|
_labels[:, -1] = -100 |
|
loss = F.cross_entropy( |
|
logits.view(-1, logits.size(-1)), |
|
_labels.to(logits.device).view(-1), |
|
) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def param_init_fn(self, module: nn.Module) -> None: |
|
init_fn_name = self.config.init_config['name'] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
|
|
def fsdp_wrap_fn(self, module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
def activation_checkpointing_fn(self, module: nn.Module) -> bool: |
|
return isinstance(module, MPTBlock) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
past_key_values: Optional[List[Tuple[torch.Tensor, |
|
torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
**kwargs: Any, |
|
) -> Dict[str, Any]: |
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds is not implemented for MPT yet') |
|
|
|
attention_mask = kwargs['attention_mask'].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError( |
|
'MPT does not support generation with right padding.') |
|
|
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
if self.transformer.prefix_lm: |
|
|
|
prefix_mask = torch.ones_like(attention_mask) |
|
|
|
if kwargs.get('use_cache') == False: |
|
raise NotImplementedError( |
|
'MPT with prefix_lm=True does not support use_cache=False.') |
|
else: |
|
prefix_mask = None |
|
|
|
return { |
|
'input_ids': input_ids, |
|
'attention_mask': attention_mask, |
|
'prefix_mask': prefix_mask, |
|
'sequence_id': sequence_id, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache', True), |
|
} |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], |
|
beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]: |
|
"""Used by HuggingFace generate when using beam search with kv-caching. |
|
|
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 |
|
for an example in transformers. |
|
""" |
|
reordered_past = [] |
|
for layer_past in past_key_values: |
|
reordered_past += [ |
|
tuple( |
|
past_state.index_select(0, beam_idx) |
|
for past_state in layer_past) |
|
] |
|
return reordered_past |
|
|
|
|
|
class ComposerMPTCausalLM(HuggingFaceModel): |
|
|
|
def __init__( |
|
self, |
|
om_model_config: DictConfig, |
|
tokenizer: Optional[PreTrainedTokenizerBase] = None, |
|
): |
|
resolved_om_model_config = om.to_container(om_model_config, |
|
resolve=True) |
|
hf_config = MPTConfig.from_dict(resolved_om_model_config) |
|
model = MPTForCausalLM(hf_config) |
|
|
|
use_train_metrics = om_model_config.get('use_train_metrics', True) |
|
train_metrics = [LanguageCrossEntropy(), |
|
LanguagePerplexity()] if use_train_metrics else [] |
|
eval_metrics = [ |
|
LanguageCrossEntropy(), |
|
LanguagePerplexity(), |
|
InContextLearningLMAccuracy(), |
|
InContextLearningMultipleChoiceAccuracy(), |
|
InContextLearningQAAccuracy(), |
|
InContextLearningCodeEvalAccuracy(), |
|
InContextLearningLMExpectedCalibrationError(), |
|
InContextLearningMCExpectedCalibrationError(), |
|
] |
|
|
|
super().__init__( |
|
model=model, |
|
tokenizer=tokenizer, |
|
use_logits=True, |
|
metrics=train_metrics, |
|
eval_metrics=eval_metrics, |
|
shift_labels=True, |
|
allow_embedding_resizing=True, |
|
) |
|
|
|
self.n_active_params = sum(p.numel() for p in self.parameters()) |
|
|
|
loss_fn_config = om_model_config.get('loss_fn', 'fused_crossentropy') |
|
if loss_fn_config == 'fused_crossentropy': |
|
try: |
|
from flash_attn.losses.cross_entropy import \ |
|
CrossEntropyLoss as FusedCrossEntropyLoss |
|
|
|
self.loss_fn = FusedCrossEntropyLoss(ignore_index=-100) |
|
except: |
|
raise ValueError( |
|
'Fused Cross Entropy is not installed. Either (1) have a CUDA-compatible GPU ' |
|
+ |
|
'and `pip install .[gpu]` if installing from source or `pip install xentropy-cuda-lib@git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/xentropy` ' |
|
+ |
|
'if installing from pypi, or (2) set your config model.loss_fn=torch_crossentropy.' |
|
) |
|
elif loss_fn_config == 'torch_crossentropy': |
|
self.loss_fn = nn.CrossEntropyLoss(ignore_index=-100) |
|
else: |
|
raise ValueError( |
|
f'Specified loss_fn={self.loss_fn} not recognized. `loss_fn` must be one of [`fused_crossentropy`, `torch_crossentropy`].' |
|
) |
|
|
|
def get_targets(self, batch: Mapping) -> torch.Tensor: |
|
targets = torch.roll(batch['labels'], shifts=-1) |
|
targets[:, -1] = -100 |
|
return targets |
|
|
|
def forward(self, batch: MutableMapping) -> CausalLMOutputWithPast: |
|
if self.model.transformer.prefix_lm: |
|
add_bidirectional_mask_if_missing(batch) |
|
|
|
return self.model( |
|
input_ids=batch['input_ids'], |
|
attention_mask=batch.get('attention_mask', None), |
|
prefix_mask=batch.get('bidirectional_mask', None), |
|
sequence_id=batch.get('sequence_id', None), |
|
inputs_embeds=batch.get('inputs_embeds', None), |
|
) |
|
|
|
def loss(self, outputs: CausalLMOutputWithPast, |
|
batch: Mapping) -> torch.Tensor: |
|
targets = self.get_targets(batch) |
|
return self.loss_fn(outputs.logits.view(-1, outputs.logits.size(-1)), |
|
targets.view(-1)) |
|
|
|
def flops_per_batch(self, batch: Mapping) -> int: |
|
|
|
|
|
|
|
|
|
bs, msl = batch['input_ids'].shape[0:2] |
|
params_flops_per_token = 2 * self.n_active_params |
|
params_flops_per_seq = params_flops_per_token * msl |
|
attn_flops_per_seq = (self.model.config.n_layers * 2 * 2 * |
|
(self.model.config.d_model * (msl**2))) |
|
|
|
return (params_flops_per_seq + attn_flops_per_seq) * 3 * bs |
|
|