crystal-technologies's picture
Upload 303 files
de4ade4
raw
history blame contribute delete
2.26 kB
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
from typing import Any
from transformers import AutoTokenizer, PreTrainedTokenizerBase
# For consistency with T5 Tokenizer, which is what this adaptation aims to mimic,
# we hardcode there to be 100 sentinel tokens
NUM_SENTINEL_TOKENS: int = 100
def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
"""Adds sentinel tokens and padding token (if missing).
Expands the tokenizer vocabulary to include sentinel tokens
used in mixture-of-denoiser tasks as well as a padding token.
All added tokens are added as special tokens. No tokens are
added if sentinel tokens and padding token already exist.
"""
# Add sentinel tokens (e.g., <extra_id_0>, <extra_id_1>, and so on). Has no effect if these are already in the vocab.
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
# If the padding token has not been set, add <pad> and use it
if tokenizer.pad_token is None:
tokenizer.add_tokens('<pad>', special_tokens=True)
tokenizer.pad_token = '<pad>'
assert tokenizer.pad_token_id is not None
# Register a property that gets us the ids of the sentinel tokens
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
_sentinel_token_ids = tokenizer(sentinels,
add_special_tokens=False).input_ids
tokenizer.sentinel_token_ids = _sentinel_token_ids
class AutoTokenizerForMOD(AutoTokenizer):
"""AutoTokenizer + Adaptation for MOD.
A simple wrapper around AutoTokenizer to make instantiating
an MOD-adapted tokenizer a bit easier.
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
a padding token, and a property to get the token ids of the
sentinel tokens.
"""
@classmethod
def from_pretrained(cls, *args: Any,
**kwargs: Any) -> PreTrainedTokenizerBase:
"""See `AutoTokenizer.from_pretrained` docstring."""
tokenizer = super().from_pretrained(*args, **kwargs)
adapt_tokenizer_for_denoising(tokenizer)
return tokenizer