export LLAVA_DEFAULT_CONVERSATION="conv_vicuna_v1" # run export LOGDIR=logs/ export out_dir="${LOGDIR}/llava-plus/llava_plus_v1.3_7b" mkdir -p $out_dir echo ${out_dir}/loginfo.txt # Note: Our scripts support multi-source data and image folders. Seperate each item with `,`. Note that it may cause problems if multiple folders have images with the same name. deepspeed run.py \ --deepspeed scripts/zero2.json \ --model_name_or_path lmsys/vicuna-7b-v1.3 \ --pretrain_mm_mlp_adapter llava-pretrain-vicuna-7b-v1.3/mm_projector.bin \ --version v1 \ --data_path train_data/llava-plus-data/llava-150k-tool-aug.json,train_data/llava-plus-data/llava-plus-v1-117k-tool-merge.json \ --image_folder train_data/train2017/,train_data/hiertext/train,/path/to/infoseek/infoseek_images,/path/to/instruct-pix2pix/clip-filtered-dataset,/path/to/goldg/vg_mdetr/images \ --vision_tower openai/clip-vit-large-patch14 \ --mm_vision_select_layer -2 \ --mm_use_im_start_end False \ --mm_use_im_patch_token False \ --output_dir $out_dir \ --num_train_epochs 3 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 2 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 8 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True # >> ${out_dir}/loginfo.txt 2>&1 # --tf32 True \ # --bf16 True \