""" A model worker executes the model. """ import uvicorn import torch.nn.functional as F import torch from transformers import AutoProcessor, Blip2ForConditionalGeneration from PIL import Image import requests import numpy as np from fastapi.responses import StreamingResponse, JSONResponse from fastapi import FastAPI, Request, BackgroundTasks import base64 from io import BytesIO import uuid import threading from typing import List, Tuple, Union import time import sys import os import json import logging import dataclasses import asyncio import argparse import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from serve.utils import build_logger, pretty_print_semaphore from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG try: from transformers import ( AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer, AutoModel, ) except ImportError: from transformers import ( AutoTokenizer, AutoModelForCausalLM, LLaMATokenizer, AutoModel, ) GB = 1 << 30 now_file_name = os.__file__ logdir = "logs/workers/" os.makedirs(logdir, exist_ok=True) logfile = os.path.join(logdir, f"{now_file_name}.log") worker_id = str(uuid.uuid4())[:6] logger = build_logger(now_file_name, logfile) global_counter = 0 model_semaphore = None def heart_beat_worker(controller): while True: time.sleep(WORKER_HEART_BEAT_INTERVAL) controller.send_heart_beat() class ModelWorker: def __init__( self, controller_addr, worker_addr, worker_id, no_register, model_path, model_names, device, ): self.controller_addr = controller_addr self.worker_addr = worker_addr self.worker_id = worker_id if model_path.endswith("/"): model_path = model_path[:-1] self.model_names = model_names or [model_path.split("/")[-1]] self.device = device # load model logger.info( f"Loading the model {self.model_names} on worker {worker_id} ...") self.processor = AutoProcessor.from_pretrained(model_path) self.model = Blip2ForConditionalGeneration.from_pretrained( model_path, torch_dtype=torch.float16) self.model.eval() self.model.to(device) if not no_register: self.register_to_controller() self.heart_beat_thread = threading.Thread( target=heart_beat_worker, args=(self,) ) self.heart_beat_thread.start() def register_to_controller(self): logger.info("Register to controller") url = self.controller_addr + "/register_worker" data = { "worker_name": self.worker_addr, "check_heart_beat": True, "worker_status": self.get_status(), } r = requests.post(url, json=data) assert r.status_code == 200 def send_heart_beat(self): logger.info( f"Send heart beat. Models: {self.model_names}. " f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " f"global_counter: {global_counter}. " f"worker_id: {worker_id}. " ) url = self.controller_addr + "/receive_heart_beat" while True: try: ret = requests.post( url, json={ "worker_name": self.worker_addr, "queue_length": self.get_queue_length(), }, timeout=5, ) exist = ret.json()["exist"] break except requests.exceptions.RequestException as e: logger.error(f"heart beat error: {e}") time.sleep(5) if not exist: self.register_to_controller() def get_queue_length(self): if ( model_semaphore is None or model_semaphore._value is None or model_semaphore._waiters is None ): return 0 else: return ( args.limit_model_concurrency - model_semaphore._value + len(model_semaphore._waiters) ) def get_status(self): return { "model_names": self.model_names, "speed": 1, "queue_length": self.get_queue_length(), } def load_image(self, image_path: str) -> Tuple[np.array, torch.Tensor]: if os.path.exists(image_path): image_source = Image.open(image_path).convert("RGB") else: # base64 coding image_source = Image.open( BytesIO(base64.b64decode(image_path))).convert("RGB") return image_source def generate_stream_func(self, model, params, device): # get inputs image_path = params["image"] # load image and run models image = self.load_image(image_path) # caption: inputs = self.processor(image, return_tensors="pt").to( device, torch.float16) generated_ids = model.generate(**inputs, max_new_tokens=20) generated_text = self.processor.batch_decode( generated_ids, skip_special_tokens=True)[0].strip() w, h = image.size pred_dict = { "caption": generated_text, "size": [h, w], # H,W } return pred_dict def generate_gate(self, params): try: ret = {"text": "", "error_code": 0} ret = self.generate_stream_func( self.model, params, self.device, ) except torch.cuda.OutOfMemoryError as e: ret = { "text": f"{SERVER_ERROR_MSG}\n\n({e})", "error_code": ErrorCode.CUDA_OUT_OF_MEMORY, } except (ValueError, RuntimeError) as e: ret = { "text": f"{SERVER_ERROR_MSG}\n\n({e})", "error_code": ErrorCode.INTERNAL_ERROR, } return ret @torch.inference_mode() def get_embeddings(self, params): try: tokenizer = self.tokenizer is_llama = "llama" in str( type(self.model) ) # vicuna support batch inference is_chatglm = "chatglm" in str(type(self.model)) is_t5 = "t5" in str(type(self.model)) if is_llama: encoding = tokenizer.batch_encode_plus( params["input"], padding=True, return_tensors="pt" ) input_ids = encoding["input_ids"].to(self.device) attention_mask = encoding["attention_mask"].to(self.device) model_output = self.model( input_ids, attention_mask, output_hidden_states=True ) data = model_output.hidden_states[-1] mask = attention_mask.unsqueeze(-1).expand(data.size()).float() masked_embeddings = data * mask sum_embeddings = torch.sum(masked_embeddings, dim=1) seq_length = torch.sum(mask, dim=1) embedding = sum_embeddings / seq_length normalized_embeddings = F.normalize(embedding, p=2, dim=1) ret = { "embedding": normalized_embeddings.tolist(), "token_num": torch.sum(attention_mask).item(), } else: embedding = [] token_num = 0 for text in params["input"]: input_ids = tokenizer.encode(text, return_tensors="pt").to( self.device ) if is_t5: model_output = self.model( input_ids, decoder_input_ids=input_ids ) else: model_output = self.model( input_ids, output_hidden_states=True) if is_chatglm: data = ( model_output.hidden_states[-1].transpose(0, 1))[0] elif is_t5: data = model_output.encoder_last_hidden_state[0] else: data = model_output.hidden_states[-1][0] data = F.normalize(torch.mean(data, dim=0), p=2, dim=0) embedding.append(data.tolist()) token_num += len(input_ids[0]) ret = { "embedding": embedding, "token_num": token_num, } except torch.cuda.OutOfMemoryError as e: ret = { "text": f"{SERVER_ERROR_MSG}\n\n({e})", "error_code": ErrorCode.CUDA_OUT_OF_MEMORY, } except (ValueError, RuntimeError) as e: ret = { "text": f"{SERVER_ERROR_MSG}\n\n({e})", "error_code": ErrorCode.INTERNAL_ERROR, } return ret app = FastAPI() def release_model_semaphore(): model_semaphore.release() def acquire_model_semaphore(): global model_semaphore, global_counter global_counter += 1 if model_semaphore is None: model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) return model_semaphore.acquire() def create_background_tasks(): background_tasks = BackgroundTasks() background_tasks.add_task(release_model_semaphore) return background_tasks @app.post("/worker_generate") async def api_generate(request: Request): params = await request.json() await acquire_model_semaphore() output = worker.generate_gate(params) release_model_semaphore() return JSONResponse(output) @app.post("/worker_get_status") async def api_get_status(request: Request): return worker.get_status() @app.post("/model_details") async def model_details(request: Request): return {"context_length": worker.context_len} if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--port", type=int, default=21006) parser.add_argument("--worker-address", type=str, default="http://localhost:21006") parser.add_argument( "--controller-address", type=str, default="http://localhost:21001" ) parser.add_argument( "--model-path", type=str, default="Salesforce/blip2-opt-2.7b" ) parser.add_argument( "--model-names", default="blip2", type=lambda s: s.split(","), help="Optional display comma separated names", ) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--limit-model-concurrency", type=int, default=5) parser.add_argument("--stream-interval", type=int, default=2) parser.add_argument("--no-register", action="store_true") args = parser.parse_args() logger.info(f"args: {args}") worker = ModelWorker( args.controller_address, args.worker_address, worker_id, args.no_register, args.model_path, args.model_names, args.device, ) uvicorn.run(app, host=args.host, port=args.port, log_level="info")