# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from typing import Any, Dict, Optional import torch from composer.core.types import Batch from composer.metrics import InContextLearningMetric from composer.metrics.nlp import (InContextLearningLMAccuracy, InContextLearningLMExpectedCalibrationError, InContextLearningMCExpectedCalibrationError, InContextLearningMultipleChoiceAccuracy, InContextLearningQAAccuracy, LanguageCrossEntropy, LanguagePerplexity) from composer.models import ComposerModel from torchmetrics import Metric from transformers import AutoTokenizer class InferenceAPIEvalWrapper(ComposerModel): def __init__(self, model_cfg: Dict, tokenizer: AutoTokenizer): self.tokenizer = tokenizer self.labels = None # set up training and eval metrics eval_metrics = [ LanguageCrossEntropy(), LanguagePerplexity(), InContextLearningLMAccuracy(), InContextLearningMultipleChoiceAccuracy(), InContextLearningQAAccuracy(), InContextLearningLMExpectedCalibrationError(), InContextLearningMCExpectedCalibrationError() ] self.eval_metrics = { metric.__class__.__name__: metric for metric in eval_metrics } super().__init__() def get_metrics(self, is_train: bool = False): if is_train: raise NotImplementedError( 'You cannot use inference wrappers for training') else: metrics = self.eval_metrics return metrics if metrics else {} def get_next_token_logit_tensor(self, prompt: str) -> Optional[torch.Tensor]: raise NotImplementedError def rebatch(self, batch: Batch): # default is a no-op, but Chat API modifies these return batch def eval_forward(self, batch: Batch, outputs: Optional[Any] = None): # If the batch mode is generate, we will generate a requested number of tokens using the underlying # model's generate function. Extra generation kwargs can be passed in via the batch. Strings will # be returned from eval_forward output_logits_batch = [] for tokens, cont_idxs in zip(batch['input_ids'], batch['continuation_indices']): seqlen = tokens.shape[0] tokens = tokens.tolist() cont_idxs = cont_idxs.tolist() expected_cont_tokens = tokens[cont_idxs[0]:cont_idxs[-1] + 1] output_logits = torch.nn.functional.one_hot( torch.tensor(tokens[1:cont_idxs[0]]), num_classes=self.tokenizer.vocab_size) for i in range(len(expected_cont_tokens)): # decode one token at a time prompt = self.tokenizer.decode(tokens[:cont_idxs[0]] + expected_cont_tokens[0:i]) next_logit_tensor = self.get_next_token_logit_tensor(prompt) if next_logit_tensor is None: continue output_logits = torch.cat( [output_logits, next_logit_tensor.reshape(1, -1)]) padding = torch.nn.functional.one_hot( torch.full((seqlen - output_logits.shape[0],), self.tokenizer.pad_token_id), num_classes=self.tokenizer.vocab_size) output_logits = torch.cat([output_logits, padding]) output_logits_batch.append(output_logits) return torch.stack(output_logits_batch).to(batch['input_ids'].device) def update_metric(self, batch: Any, outputs: Any, metric: Metric) -> None: batch = self.rebatch(batch) self.labels = batch.pop('labels') self.labels[:, :-1] = self.labels[:, 1:].clone() self.labels[:, -1] = -100 if isinstance(metric, InContextLearningMetric) and batch.get( 'mode', None) == 'icl_task': assert self.labels is not None metric.update(batch, outputs, self.labels) else: raise NotImplementedError( 'Inference API wrapper only supports InContextLearningMetrics and mode=icl_task' ) def forward(self): raise NotImplementedError( "Inference API wrapper doesn't support forward") def loss(self): raise NotImplementedError("Inference API wrapper doesn't support loss")