# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Streaming dataset conversion scripts for json files.""" import os from argparse import ArgumentParser, Namespace from enum import Enum from glob import glob from typing import Dict, Iterable, Optional import datasets as hf_datasets from streaming import MDSWriter from torch.utils.data import DataLoader, IterableDataset from tqdm import tqdm from transformers import AutoTokenizer, PreTrainedTokenizerBase from llmfoundry.data import ConcatTokensDataset, NoConcatDataset class ConcatMode(Enum): NO_CONCAT = 'NO_CONCAT' CONCAT_TOKENS = 'CONCAT_TOKENS' def parse_args() -> Namespace: """Parse commandline arguments.""" parser = ArgumentParser( description= 'Convert dataset into MDS format, optionally concatenating and tokenizing' ) parser.add_argument('--path', type=str, required=True) parser.add_argument('--out_root', type=str, required=True) parser.add_argument('--compression', type=str, default=None) group = parser.add_mutually_exclusive_group(required=False) group.add_argument( '--concat_tokens', type=int, help='Convert text to tokens and concatenate up to this many tokens') parser.add_argument('--split', type=str, default='train') parser.add_argument('--tokenizer', type=str, required=False, default=None) parser.add_argument('--bos_text', type=str, required=False, default=None) parser.add_argument('--eos_text', type=str, required=False, default=None) parser.add_argument('--no_wrap', default=False, action='store_true') parsed = parser.parse_args() if os.path.isdir(parsed.out_root) and len( set(os.listdir(parsed.out_root)).intersection(set( parsed.split))) > 0: raise ValueError( f'--out_root={parsed.out_root} contains {os.listdir(parsed.out_root)} which cannot overlap with the requested splits {parsed.splits}.' ) # Make sure we have needed concat options if (parsed.concat_tokens is not None and isinstance(parsed.concat_tokens, int) and parsed.tokenizer is None): parser.error( 'When setting --concat_tokens, you must specify a --tokenizer') # now that we have validated them, change BOS/EOS to strings if parsed.bos_text is None: parsed.bos_text = '' if parsed.eos_text is None: parsed.eos_text = '' return parsed def build_hf_dataset( path: str, split: str, mode: ConcatMode, max_length: Optional[int] = None, bos_text: str = '', eos_text: str = '', no_wrap: bool = False, tokenizer: PreTrainedTokenizerBase = None, ) -> IterableDataset: """Build an IterableDataset over the HF C4 or pile source data. Args: dataset_name (str): Dataset name split (str): Split name. mode (ConcatMode): NO_CONCAT, or CONCAT_TOKENS max_length (int): The length of concatenated tokens bos_text (str): text to insert at the beginning of each sequence eos_text (str): text to insert at the end of each sequence no_wrap (bool): if concatenating, whether to wrap text across `max_length` boundaries tokenizer (PreTrainedTokenizerBase): if mode is CONCAT_TOKENS, the tokenizer to use data_subset (str): Referred to as "name" in HuggingFace datasets.load_dataset. Typically "all" (The Pile) or "en" (c4). Returns: An IterableDataset. """ if os.path.isdir(path): data_files = glob(f'{path}/*') else: data_files = path hf_dataset = hf_datasets.load_dataset('json', data_files=data_files, split=split) if mode == ConcatMode.NO_CONCAT: dataset = NoConcatDataset(hf_dataset) else: if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( f'{tokenizer=} must be of type PreTrainedTokenizerBase') if max_length is None: raise ValueError(f'max_length must be set.') if bos_text + eos_text == '': test_tokens = tokenizer('test') if test_tokens['input_ids'][ 0] != tokenizer.bos_token_id and test_tokens['input_ids'][ -1] != tokenizer.eos_token_id: tok_error_msg = 'This tokenizer does not insert an EOS nor BOS token. ' tok_error_msg += 'Concatenating with this tokenizer will result in sequences being ' tok_error_msg += 'attached without a separating token. Please use another tokenizer, ' tok_error_msg += 'such as facebook/opt-125m, or specify EOS/BOS text with e.g. ' tok_error_msg += '--bos_text=<|endoftext|>.' raise ValueError(tok_error_msg) dataset = ConcatTokensDataset(hf_dataset=hf_dataset, tokenizer=tokenizer, max_length=max_length, bos_text=bos_text, eos_text=eos_text, no_wrap=no_wrap) return dataset def generate_samples( loader: DataLoader, truncate_num_samples: Optional[int] = None ) -> Iterable[Dict[str, bytes]]: """Generator over samples of a dataloader. Args: loader (DataLoader): A dataloader emitting batches like {key: [sample0_bytes, sample1_bytes, sample2_bytes, ...]} truncate_num_samples (Optional[int]): An optional # of samples to stop at. Yields: Sample dicts. """ n_samples = 0 for batch in loader: keys = list(batch.keys()) current_bs = len(batch[keys[0]]) for idx in range(current_bs): if truncate_num_samples is not None and n_samples == truncate_num_samples: return n_samples += 1 yield {k: v[idx] for k, v in batch.items()} def main(args: Namespace) -> None: """Main: create C4/pile streaming dataset. Args: args (Namespace): Commandline arguments. """ if args.concat_tokens is not None: mode = ConcatMode.CONCAT_TOKENS tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) # we will enforce length, so suppress warnings about sequences too long for the model tokenizer.model_max_length = int(1e30) columns = {'tokens': 'bytes'} else: mode = ConcatMode.NO_CONCAT tokenizer = None columns = {'text': 'str'} # Get samples dataset = build_hf_dataset(path=args.path, split=args.split, mode=mode, max_length=args.concat_tokens, bos_text=args.bos_text, eos_text=args.eos_text, no_wrap=args.no_wrap, tokenizer=tokenizer) print('here') # Write samples print(f'Converting to MDS format...') print( f'Note that the progress bar is based on the dataset length before tokenization.' ) print(f'It will finish at a value below 100% if tokenizing') with MDSWriter(columns=columns, out=os.path.join(args.out_root), compression=args.compression) as out: for sample in tqdm(dataset): out.write(sample) if __name__ == '__main__': main(parse_args())