File size: 7,435 Bytes
6e73cd3
 
 
 
4a51238
6e73cd3
714d948
6e73cd3
 
 
 
 
 
21c32dd
6e73cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c32dd
 
69d7fe2
6e73cd3
 
 
 
 
 
 
 
 
4a51238
6e73cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714d948
 
 
6e73cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from CircumSpect.vqa.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN
from CircumSpect.vqa.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from CircumSpect.vqa.conversation_obj import conv_templates_obj, SeparatorStyle_obj
from CircumSpect.vqa.conversation_vqa import conv_templates, SeparatorStyle
from transformers import AutoTokenizer, BitsAndBytesConfig
from CircumSpect.vqa.utils import disable_torch_init
from Perceptrix.streamer import TextStreamer
from CircumSpect.vqa.model import *
from utils import setup_device
from io import BytesIO
from PIL import Image
import requests
import torch
import os

device = setup_device()


def load_image(image_file):
    if image_file.startswith('http') or image_file.startswith('https'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


disable_torch_init()

model_name = os.environ.get('VLM_MODEL')

model_path = "models/CRYSTAL-vision" if model_name == None else model_name
model_base = None
conv_mode = None
temperature = 0.2
max_new_tokens = 512

model_name = get_model_name_from_path(model_path)
image_processor = None

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = LlavaMPTForCausalLM.from_pretrained(
    model_path,
    low_cpu_mem_usage=True,
    device_map="auto",
    torch_dtype=torch.float32 if str(device) == "cpu" else torch.float16,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        low_cpu_mem_usage=True,
        bnb_4bit_compute_dtype=torch.bfloat16
    ) if str(device) == "cuda" else None,
    offload_folder="offloads",
)

mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
    tokenizer.add_tokens(
        [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))

vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
    vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float32)
image_processor = vision_tower.image_processor

if hasattr(model.config, "max_sequence_length"):
    context_len = model.config.max_sequence_length
else:
    context_len = 2048


if 'llama-2' in model_name.lower():
    conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
    conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
    conv_mode = "mpt"
else:
    conv_mode = "llava_v0"

if conv_mode is not None and conv_mode != conv_mode:
    print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, conv_mode, conv_mode))
else:
    conv_mode = conv_mode

conv = conv_templates[conv_mode].copy()
if "mpt" in model_name.lower():
    roles = ('User', 'Assistant')
else:
    roles = conv.roles

streamer = TextStreamer(tokenizer, skip_prompt=True,
        skip_special_tokens=True, save_file="vlm-reply.txt")


def answer_question(question, image_file):
    conv = conv_templates[conv_mode].copy()
    inp = question
    image = load_image(image_file)
    if str(device) == "cpu":
        image_tensor = image_processor.preprocess(image, return_tensors='pt')[
            'pixel_values'].to(device)
    else:
        image_tensor = image_processor.preprocess(image, return_tensors='pt')[
            'pixel_values'].half().to(device)

    print(f"{roles[1]}: ", end="")

    if image is not None:
        # first message
        if model.config.mm_use_im_start_end:
            inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
                DEFAULT_IM_END_TOKEN + '\n' + inp
        else:
            inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
        conv.append_message(conv.roles[0], inp)
        image = None
    else:
        # later messages
        conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    input_ids = tokenizer_image_token(
        prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(
        keywords, tokenizer, input_ids)

    with open("./database/vlm-reply.txt", 'w') as clear_file:
        clear_file.write("")

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            streamer=streamer,
            use_cache=True,
            stopping_criteria=[stopping_criteria])

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    conv.messages[-1][-1] = outputs
    return outputs


conv_obj = conv_templates_obj[conv_mode].copy()
if "mpt" in model_name.lower():
    roles = ('User', 'Assistant')
else:
    roles = conv_obj.roles


def find_object_description(question, image_file):
    conv_obj = conv_templates_obj[conv_mode].copy()
    inp = question
    image = load_image(image_file)
    if str(device) == "cpu":
        image_tensor = image_processor.preprocess(image, return_tensors='pt')[
            'pixel_values'].to(device)
    else:
        image_tensor = image_processor.preprocess(image, return_tensors='pt')[
            'pixel_values'].half().to(device)

    print(f"{roles[1]}: ", end="")

    if image is not None:
        # first message
        if model.config.mm_use_im_start_end:
            inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
                DEFAULT_IM_END_TOKEN + '\n' + inp
        else:
            inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
        conv_obj.append_message(conv_obj.roles[0], inp)
        image = None
    else:
        # later messages
        conv_obj.append_message(conv_obj.roles[0], inp)
    conv_obj.append_message(conv_obj.roles[1], None)
    prompt = conv_obj.get_prompt()
    input_ids = tokenizer_image_token(
        prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)

    stop_str = conv_obj.sep if conv_obj.sep_style != SeparatorStyle_obj.TWO else conv_obj.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(
        keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            streamer=streamer,
            use_cache=True,
            stopping_criteria=[stopping_criteria])

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    conv_obj.messages[-1][-1] = outputs
    return outputs


if __name__ == "__main__":
    print("RUNNING TEST\n\tTest Image: https://llava-vl.github.io/static/images/view.jpg\n\tPrompt: What is this image about?")
    answer_question("What is this image about?",
                    "https://llava-vl.github.io/static/images/view.jpg")