File size: 7,911 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Utility methods to be used for training N-gram LM with KenLM in train_kenlm.py
The BPE sub-words are encoded using the Unicode table.
This encoding scheme reduces the required memory significantly, and the LM and its binary blob format require less storage space.
The value DEFAULT_TOKEN_OFFSET from nemo.collections.asr.parts.submodules.ctc_beam_decoding is utilized as the offset value.
"""
CHUNK_SIZE = 8192
CHUNK_BUFFER_SIZE = 512
import gzip
import json
import os
import numpy as np
import torch
from joblib import Parallel, delayed
from tqdm.auto import tqdm
import nemo.collections.asr as nemo_asr
from nemo.collections.asr.parts.submodules.ctc_beam_decoding import DEFAULT_TOKEN_OFFSET
from nemo.utils import logging
# List of the supported models to be used with N-gram LM and beam search decoding
SUPPORTED_MODELS = {
'EncDecCTCModelBPE': 'subword',
'EncDecCTCModel': 'char',
'EncDecRNNTBPEModel': 'subword',
'EncDecRNNTModel': 'char',
'EncDecHybridRNNTCTCBPEModel': 'subword',
'EncDecHybridRNNTCTCModel': 'char',
}
def softmax(x):
e = np.exp(x - np.max(x))
return e / e.sum(axis=-1).reshape([x.shape[0], 1])
def get_train_list(args_train_path):
train_path = []
for train_item in args_train_path:
if os.path.isdir(train_item):
file_list = os.listdir(train_item)
train_path.extend([os.path.join(train_item, file) for file in file_list])
elif os.path.isfile(train_item):
train_path.append(train_item)
return sorted(train_path)
def setup_tokenizer(nemo_model_file):
""" TOKENIZER SETUP
nemo_model_file (str): The path to the NeMo model file (.nemo).
"""
logging.info(f"Loading nemo model '{nemo_model_file}' ...")
if nemo_model_file.endswith('.nemo'):
model = nemo_asr.models.ASRModel.restore_from(nemo_model_file, map_location=torch.device('cpu'))
else:
logging.warning(
"tokenizer_model_file does not end with .model or .nemo, therefore trying to load a pretrained model with this name."
)
model = nemo_asr.models.ASRModel.from_pretrained(nemo_model_file, map_location=torch.device('cpu'))
is_aggregate_tokenizer = False
tokenizer_nemo = None
encoding_level = SUPPORTED_MODELS.get(type(model).__name__, None)
if not encoding_level:
logging.warning(
f"Model type '{type(model).__name__}' may not be supported. Would try to train a char-level LM."
)
encoding_level = 'char'
if encoding_level == 'subword':
if type(model.tokenizer).__name__ == 'AggregateTokenizer':
is_aggregate_tokenizer = True
tokenizer_nemo = model.tokenizer
del model
return tokenizer_nemo, encoding_level, is_aggregate_tokenizer
def iter_files(source_path, dest_path, tokenizer, encoding_level, is_aggregate_tokenizer, verbose):
if isinstance(dest_path, list):
paths = zip(dest_path, source_path)
else: # dest_path is stdin of KenLM
paths = [(dest_path, path) for path in source_path]
for dest_path, input_path in paths:
dataset = read_train_file(input_path, is_aggregate_tokenizer=is_aggregate_tokenizer, verbose=verbose)
if encoding_level == "subword":
tokenize_text(
data=dataset,
tokenizer=tokenizer,
path=dest_path,
chunk_size=CHUNK_SIZE,
buffer_size=CHUNK_BUFFER_SIZE,
)
else: # encoding_level == "char"
if isinstance(dest_path, str):
with open(dest_path, 'w', encoding='utf-8') as f:
for line in dataset:
f.write(line[0] + "\n")
else: # write to stdin of KenLM
for line in dataset:
dest_path.write((line[0] + '\n').encode())
def read_train_file(
path, is_aggregate_tokenizer: bool = False, verbose: int = 0,
):
lines_read = 0
text_dataset, lang_dataset = [], []
if path[-8:] == '.json.gz': # for Common Crawl dataset
fin = gzip.open(path, 'r')
else:
fin = open(path, 'r', encoding='utf-8')
if verbose > 0:
reader = tqdm(iter(lambda: fin.readline(), ''), desc="Read 0 lines", unit=' lines')
else:
reader = fin
for line in reader:
lang = None
if line:
if path[-8:] == '.json.gz': # for Common Crawl dataset
line = json.loads(line.decode('utf-8'))['text']
elif path.endswith('.json'):
jline = json.loads(line)
line = jline['text']
if is_aggregate_tokenizer:
lang = jline['lang']
line_list = line.split("\n")
line = " ".join(line_list)
if line:
text_dataset.append(line)
if lang:
lang_dataset.append(lang)
lines_read += 1
if verbose > 0 and lines_read % 100000 == 0:
reader.set_description(f"Read {lines_read} lines")
else:
break
fin.close()
if is_aggregate_tokenizer:
assert len(text_dataset) == len(
lang_dataset
), f"text_dataset length {len(text_dataset)} and lang_dataset length {len(lang_dataset)} must be the same!"
return list(zip(text_dataset, lang_dataset))
else:
return [[text] for text in text_dataset]
def tokenize_str(texts, tokenizer):
tokenized_text = []
for text in texts:
tok_text = tokenizer.text_to_ids(*text)
tok_text = [chr(token + DEFAULT_TOKEN_OFFSET) for token in tok_text]
tokenized_text.append(tok_text)
return tokenized_text
def tokenize_text(data, tokenizer, path, chunk_size=8192, buffer_size=32):
dataset_len = len(data)
current_step = 0
if isinstance(path, str) and os.path.exists(path):
os.remove(path)
with Parallel(n_jobs=-2, verbose=0) as parallel:
while True:
start = current_step * chunk_size
end = min((current_step + buffer_size) * chunk_size, dataset_len)
tokenized_data = parallel(
delayed(tokenize_str)(data[start : start + chunk_size], tokenizer)
for start in range(start, end, chunk_size)
)
# Write dataset
write_dataset(tokenized_data, path)
current_step += len(tokenized_data)
logging.info(
f"Finished writing {len(tokenized_data)} chunks to {path}. Current chunk index = {current_step}"
)
del tokenized_data
if end >= dataset_len:
break
def write_dataset(chunks, path):
if isinstance(path, str):
with open(path, 'a+', encoding='utf-8') as f:
for chunk_idx in tqdm(range(len(chunks)), desc='Chunk ', total=len(chunks), unit=' chunks'):
for text in chunks[chunk_idx]:
line = ' '.join(text)
f.write(f"{line}\n")
else: # write to stdin of KenLM
for chunk_idx in range(len(chunks)):
for text in chunks[chunk_idx]:
line = ' '.join(text)
path.write((line + '\n').encode())
|