File size: 7,911 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Utility methods to be used for training N-gram LM with KenLM in train_kenlm.py

The BPE sub-words are encoded using the Unicode table. 
This encoding scheme reduces the required memory significantly, and the LM and its binary blob format require less storage space. 
The value DEFAULT_TOKEN_OFFSET from nemo.collections.asr.parts.submodules.ctc_beam_decoding is utilized as the offset value.
"""

CHUNK_SIZE = 8192
CHUNK_BUFFER_SIZE = 512

import gzip
import json
import os

import numpy as np
import torch
from joblib import Parallel, delayed
from tqdm.auto import tqdm

import nemo.collections.asr as nemo_asr
from nemo.collections.asr.parts.submodules.ctc_beam_decoding import DEFAULT_TOKEN_OFFSET
from nemo.utils import logging

# List of the supported models to be used with N-gram LM and beam search decoding
SUPPORTED_MODELS = {
    'EncDecCTCModelBPE': 'subword',
    'EncDecCTCModel': 'char',
    'EncDecRNNTBPEModel': 'subword',
    'EncDecRNNTModel': 'char',
    'EncDecHybridRNNTCTCBPEModel': 'subword',
    'EncDecHybridRNNTCTCModel': 'char',
}


def softmax(x):
    e = np.exp(x - np.max(x))
    return e / e.sum(axis=-1).reshape([x.shape[0], 1])


def get_train_list(args_train_path):

    train_path = []
    for train_item in args_train_path:
        if os.path.isdir(train_item):
            file_list = os.listdir(train_item)
            train_path.extend([os.path.join(train_item, file) for file in file_list])

        elif os.path.isfile(train_item):
            train_path.append(train_item)
    return sorted(train_path)


def setup_tokenizer(nemo_model_file):
    """ TOKENIZER SETUP 
        nemo_model_file (str): The path to the NeMo model file (.nemo).
    """
    logging.info(f"Loading nemo model '{nemo_model_file}' ...")
    if nemo_model_file.endswith('.nemo'):
        model = nemo_asr.models.ASRModel.restore_from(nemo_model_file, map_location=torch.device('cpu'))
    else:
        logging.warning(
            "tokenizer_model_file does not end with .model or .nemo, therefore trying to load a pretrained model with this name."
        )
        model = nemo_asr.models.ASRModel.from_pretrained(nemo_model_file, map_location=torch.device('cpu'))

    is_aggregate_tokenizer = False
    tokenizer_nemo = None
    encoding_level = SUPPORTED_MODELS.get(type(model).__name__, None)
    if not encoding_level:
        logging.warning(
            f"Model type '{type(model).__name__}' may not be supported. Would try to train a char-level LM."
        )
        encoding_level = 'char'

    if encoding_level == 'subword':
        if type(model.tokenizer).__name__ == 'AggregateTokenizer':
            is_aggregate_tokenizer = True

        tokenizer_nemo = model.tokenizer

    del model

    return tokenizer_nemo, encoding_level, is_aggregate_tokenizer


def iter_files(source_path, dest_path, tokenizer, encoding_level, is_aggregate_tokenizer, verbose):
    if isinstance(dest_path, list):
        paths = zip(dest_path, source_path)
    else:  # dest_path is stdin of KenLM
        paths = [(dest_path, path) for path in source_path]

    for dest_path, input_path in paths:
        dataset = read_train_file(input_path, is_aggregate_tokenizer=is_aggregate_tokenizer, verbose=verbose)
        if encoding_level == "subword":
            tokenize_text(
                data=dataset,
                tokenizer=tokenizer,
                path=dest_path,
                chunk_size=CHUNK_SIZE,
                buffer_size=CHUNK_BUFFER_SIZE,
            )
        else:  # encoding_level == "char"
            if isinstance(dest_path, str):
                with open(dest_path, 'w', encoding='utf-8') as f:
                    for line in dataset:
                        f.write(line[0] + "\n")
            else:  # write to stdin of KenLM
                for line in dataset:
                    dest_path.write((line[0] + '\n').encode())


def read_train_file(
    path, is_aggregate_tokenizer: bool = False, verbose: int = 0,
):
    lines_read = 0
    text_dataset, lang_dataset = [], []
    if path[-8:] == '.json.gz':  # for Common Crawl dataset
        fin = gzip.open(path, 'r')
    else:
        fin = open(path, 'r', encoding='utf-8')

    if verbose > 0:
        reader = tqdm(iter(lambda: fin.readline(), ''), desc="Read 0 lines", unit=' lines')
    else:
        reader = fin

    for line in reader:
        lang = None
        if line:
            if path[-8:] == '.json.gz':  # for Common Crawl dataset
                line = json.loads(line.decode('utf-8'))['text']
            elif path.endswith('.json'):
                jline = json.loads(line)
                line = jline['text']
                if is_aggregate_tokenizer:
                    lang = jline['lang']

            line_list = line.split("\n")

            line = " ".join(line_list)
            if line:
                text_dataset.append(line)
                if lang:
                    lang_dataset.append(lang)
                lines_read += 1
                if verbose > 0 and lines_read % 100000 == 0:
                    reader.set_description(f"Read {lines_read} lines")
        else:
            break
    fin.close()
    if is_aggregate_tokenizer:
        assert len(text_dataset) == len(
            lang_dataset
        ), f"text_dataset length {len(text_dataset)} and lang_dataset length {len(lang_dataset)} must be the same!"
        return list(zip(text_dataset, lang_dataset))
    else:
        return [[text] for text in text_dataset]


def tokenize_str(texts, tokenizer):
    tokenized_text = []
    for text in texts:
        tok_text = tokenizer.text_to_ids(*text)
        tok_text = [chr(token + DEFAULT_TOKEN_OFFSET) for token in tok_text]
        tokenized_text.append(tok_text)
    return tokenized_text


def tokenize_text(data, tokenizer, path, chunk_size=8192, buffer_size=32):
    dataset_len = len(data)
    current_step = 0
    if isinstance(path, str) and os.path.exists(path):
        os.remove(path)

    with Parallel(n_jobs=-2, verbose=0) as parallel:
        while True:
            start = current_step * chunk_size
            end = min((current_step + buffer_size) * chunk_size, dataset_len)

            tokenized_data = parallel(
                delayed(tokenize_str)(data[start : start + chunk_size], tokenizer)
                for start in range(start, end, chunk_size)
            )

            # Write dataset
            write_dataset(tokenized_data, path)
            current_step += len(tokenized_data)
            logging.info(
                f"Finished writing {len(tokenized_data)} chunks to {path}. Current chunk index = {current_step}"
            )
            del tokenized_data
            if end >= dataset_len:
                break


def write_dataset(chunks, path):
    if isinstance(path, str):
        with open(path, 'a+', encoding='utf-8') as f:
            for chunk_idx in tqdm(range(len(chunks)), desc='Chunk ', total=len(chunks), unit=' chunks'):
                for text in chunks[chunk_idx]:
                    line = ' '.join(text)
                    f.write(f"{line}\n")
    else:  # write to stdin of KenLM
        for chunk_idx in range(len(chunks)):
            for text in chunks[chunk_idx]:
                line = ' '.join(text)
                path.write((line + '\n').encode())