File size: 7,532 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


# This script would train an N-gram language model with KenLM library (https://github.com/kpu/kenlm) which can be used
# with the beam search decoders on top of the ASR models. This script supports both character level and BPE level
# encodings and models which is detected automatically from the type of the model.
# After the N-gram model is trained, and stored in the binary format, you may use
# 'scripts/ngram_lm/eval_beamsearch_ngram.py' to evaluate it on an ASR model.
#
# You need to install the KenLM library and also the beam search decoders to use this feature. Please refer
# to 'scripts/ngram_lm/install_beamsearch_decoders.sh' on how to install them.
#
# USAGE: python train_kenlm.py nemo_model_file=<path to the .nemo file of the model> \
#                              train_paths=<list of paths to the training text or JSON manifest file> \
#                              kenlm_bin_path=<path to the bin folder of KenLM library> \
#                              kenlm_model_file=<path to store the binary KenLM model> \
#                              ngram_length=<order of N-gram model> \
#
# After training is done, the binary LM model is stored at the path specified by '--kenlm_model_file'.
# You may find more info on how to use this script at:
# https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html

import logging
import os
import subprocess
import sys
from dataclasses import dataclass, field
from glob import glob
from typing import List

from omegaconf import MISSING
from scripts.asr_language_modeling.ngram_lm import kenlm_utils

from nemo.core.config import hydra_runner
from nemo.utils import logging

"""
NeMo's beam search decoders only support char-level encodings. In order to make it work with BPE-level encodings, we
use a trick to encode the sub-word tokens of the training data as unicode characters and train a char-level KenLM. 
"""


@dataclass
class TrainKenlmConfig:
    """
    Train an N-gram language model with KenLM to be used with beam search decoder of ASR models.
    """

    train_paths: List[
        str
    ] = MISSING  # List of training files or folders. Files can be a plain text file or ".json" manifest or ".json.gz". Example: [/path/to/manifest/file,/path/to/folder]

    nemo_model_file: str = MISSING  # The path to '.nemo' file of the ASR model, or name of a pretrained NeMo model
    kenlm_model_file: str = MISSING  # The path to store the KenLM binary model file
    ngram_length: int = MISSING  # The order of N-gram LM
    kenlm_bin_path: str = MISSING  # The path to the bin folder of KenLM.

    preserve_arpa: bool = False  # Whether to preserve the intermediate ARPA file.
    ngram_prune: List[int] = field(
        default_factory=lambda: [0]
    )  # List of digits to prune Ngram. Example: [0,0,1]. See Pruning section on the https://kheafield.com/code/kenlm/estimation
    cache_path: str = ""  # Cache path to save tokenized files.
    verbose: int = 1  # Verbose level, default is 1.


@hydra_runner(config_path=None, config_name='TrainKenlmConfig', schema=TrainKenlmConfig)
def main(args: TrainKenlmConfig):
    train_paths = kenlm_utils.get_train_list(args.train_paths)

    if isinstance(args.ngram_prune, str):
        args.ngram_prune = [args.ngram_prune]

    tokenizer, encoding_level, is_aggregate_tokenizer = kenlm_utils.setup_tokenizer(args.nemo_model_file)

    if encoding_level == "subword":
        discount_arg = "--discount_fallback"  # --discount_fallback is needed for training KenLM for BPE-based models
    else:
        discount_arg = ""

    arpa_file = f"{args.kenlm_model_file}.tmp.arpa"
    """ LMPLZ ARGUMENT SETUP """
    kenlm_args = [
        os.path.join(args.kenlm_bin_path, 'lmplz'),
        "-o",
        str(args.ngram_length),
        "--arpa",
        arpa_file,
        discount_arg,
        "--prune",
    ] + [str(n) for n in args.ngram_prune]

    if args.cache_path:
        if not os.path.exists(args.cache_path):
            os.makedirs(args.cache_path, exist_ok=True)

        """ DATASET SETUP """
        encoded_train_files = []
        for file_num, train_file in enumerate(train_paths):
            logging.info(f"Encoding the train file '{train_file}' number {file_num+1} out of {len(train_paths)} ...")

            cached_files = glob(os.path.join(args.cache_path, os.path.split(train_file)[1]) + "*")
            encoded_train_file = os.path.join(args.cache_path, os.path.split(train_file)[1] + f"_{file_num}.tmp.txt")
            if (
                cached_files and cached_files[0] != encoded_train_file
            ):  # cached_files exists but has another file name: f"_{file_num}.tmp.txt"
                os.rename(cached_files[0], encoded_train_file)
                logging.info("Rename", cached_files[0], "to", encoded_train_file)

            encoded_train_files.append(encoded_train_file)

        kenlm_utils.iter_files(
            source_path=train_paths,
            dest_path=encoded_train_files,
            tokenizer=tokenizer,
            encoding_level=encoding_level,
            is_aggregate_tokenizer=is_aggregate_tokenizer,
            verbose=args.verbose,
        )

        first_process_args = ["cat"] + encoded_train_files
        first_process = subprocess.Popen(first_process_args, stdout=subprocess.PIPE, stderr=sys.stderr)

        logging.info(f"Running lmplz command \n\n{' '.join(kenlm_args)}\n\n")
        kenlm_p = subprocess.run(
            kenlm_args,
            stdin=first_process.stdout,
            capture_output=False,
            text=True,
            stdout=sys.stdout,
            stderr=sys.stderr,
        )
        first_process.wait()

    else:
        logging.info(f"Running lmplz command \n\n{' '.join(kenlm_args)}\n\n")
        kenlm_p = subprocess.Popen(kenlm_args, stdout=sys.stdout, stdin=subprocess.PIPE, stderr=sys.stderr)

        kenlm_utils.iter_files(
            source_path=train_paths,
            dest_path=kenlm_p.stdin,
            tokenizer=tokenizer,
            encoding_level=encoding_level,
            is_aggregate_tokenizer=is_aggregate_tokenizer,
            verbose=args.verbose,
        )

        kenlm_p.communicate()

    if kenlm_p.returncode != 0:
        raise RuntimeError("Training KenLM was not successful!")

    """ BINARY BUILD """

    kenlm_args = [
        os.path.join(args.kenlm_bin_path, "build_binary"),
        "trie",
        arpa_file,
        args.kenlm_model_file,
    ]
    logging.info(f"Running binary_build command \n\n{' '.join(kenlm_args)}\n\n")
    ret = subprocess.run(kenlm_args, capture_output=False, text=True, stdout=sys.stdout, stderr=sys.stderr)

    if ret.returncode != 0:
        raise RuntimeError("Training KenLM was not successful!")

    if not args.preserve_arpa:
        os.remove(arpa_file)
        logging.info(f"Deleted the arpa file '{arpa_file}'.")


if __name__ == '__main__':
    main()