File size: 7,532 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script would train an N-gram language model with KenLM library (https://github.com/kpu/kenlm) which can be used
# with the beam search decoders on top of the ASR models. This script supports both character level and BPE level
# encodings and models which is detected automatically from the type of the model.
# After the N-gram model is trained, and stored in the binary format, you may use
# 'scripts/ngram_lm/eval_beamsearch_ngram.py' to evaluate it on an ASR model.
#
# You need to install the KenLM library and also the beam search decoders to use this feature. Please refer
# to 'scripts/ngram_lm/install_beamsearch_decoders.sh' on how to install them.
#
# USAGE: python train_kenlm.py nemo_model_file=<path to the .nemo file of the model> \
# train_paths=<list of paths to the training text or JSON manifest file> \
# kenlm_bin_path=<path to the bin folder of KenLM library> \
# kenlm_model_file=<path to store the binary KenLM model> \
# ngram_length=<order of N-gram model> \
#
# After training is done, the binary LM model is stored at the path specified by '--kenlm_model_file'.
# You may find more info on how to use this script at:
# https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html
import logging
import os
import subprocess
import sys
from dataclasses import dataclass, field
from glob import glob
from typing import List
from omegaconf import MISSING
from scripts.asr_language_modeling.ngram_lm import kenlm_utils
from nemo.core.config import hydra_runner
from nemo.utils import logging
"""
NeMo's beam search decoders only support char-level encodings. In order to make it work with BPE-level encodings, we
use a trick to encode the sub-word tokens of the training data as unicode characters and train a char-level KenLM.
"""
@dataclass
class TrainKenlmConfig:
"""
Train an N-gram language model with KenLM to be used with beam search decoder of ASR models.
"""
train_paths: List[
str
] = MISSING # List of training files or folders. Files can be a plain text file or ".json" manifest or ".json.gz". Example: [/path/to/manifest/file,/path/to/folder]
nemo_model_file: str = MISSING # The path to '.nemo' file of the ASR model, or name of a pretrained NeMo model
kenlm_model_file: str = MISSING # The path to store the KenLM binary model file
ngram_length: int = MISSING # The order of N-gram LM
kenlm_bin_path: str = MISSING # The path to the bin folder of KenLM.
preserve_arpa: bool = False # Whether to preserve the intermediate ARPA file.
ngram_prune: List[int] = field(
default_factory=lambda: [0]
) # List of digits to prune Ngram. Example: [0,0,1]. See Pruning section on the https://kheafield.com/code/kenlm/estimation
cache_path: str = "" # Cache path to save tokenized files.
verbose: int = 1 # Verbose level, default is 1.
@hydra_runner(config_path=None, config_name='TrainKenlmConfig', schema=TrainKenlmConfig)
def main(args: TrainKenlmConfig):
train_paths = kenlm_utils.get_train_list(args.train_paths)
if isinstance(args.ngram_prune, str):
args.ngram_prune = [args.ngram_prune]
tokenizer, encoding_level, is_aggregate_tokenizer = kenlm_utils.setup_tokenizer(args.nemo_model_file)
if encoding_level == "subword":
discount_arg = "--discount_fallback" # --discount_fallback is needed for training KenLM for BPE-based models
else:
discount_arg = ""
arpa_file = f"{args.kenlm_model_file}.tmp.arpa"
""" LMPLZ ARGUMENT SETUP """
kenlm_args = [
os.path.join(args.kenlm_bin_path, 'lmplz'),
"-o",
str(args.ngram_length),
"--arpa",
arpa_file,
discount_arg,
"--prune",
] + [str(n) for n in args.ngram_prune]
if args.cache_path:
if not os.path.exists(args.cache_path):
os.makedirs(args.cache_path, exist_ok=True)
""" DATASET SETUP """
encoded_train_files = []
for file_num, train_file in enumerate(train_paths):
logging.info(f"Encoding the train file '{train_file}' number {file_num+1} out of {len(train_paths)} ...")
cached_files = glob(os.path.join(args.cache_path, os.path.split(train_file)[1]) + "*")
encoded_train_file = os.path.join(args.cache_path, os.path.split(train_file)[1] + f"_{file_num}.tmp.txt")
if (
cached_files and cached_files[0] != encoded_train_file
): # cached_files exists but has another file name: f"_{file_num}.tmp.txt"
os.rename(cached_files[0], encoded_train_file)
logging.info("Rename", cached_files[0], "to", encoded_train_file)
encoded_train_files.append(encoded_train_file)
kenlm_utils.iter_files(
source_path=train_paths,
dest_path=encoded_train_files,
tokenizer=tokenizer,
encoding_level=encoding_level,
is_aggregate_tokenizer=is_aggregate_tokenizer,
verbose=args.verbose,
)
first_process_args = ["cat"] + encoded_train_files
first_process = subprocess.Popen(first_process_args, stdout=subprocess.PIPE, stderr=sys.stderr)
logging.info(f"Running lmplz command \n\n{' '.join(kenlm_args)}\n\n")
kenlm_p = subprocess.run(
kenlm_args,
stdin=first_process.stdout,
capture_output=False,
text=True,
stdout=sys.stdout,
stderr=sys.stderr,
)
first_process.wait()
else:
logging.info(f"Running lmplz command \n\n{' '.join(kenlm_args)}\n\n")
kenlm_p = subprocess.Popen(kenlm_args, stdout=sys.stdout, stdin=subprocess.PIPE, stderr=sys.stderr)
kenlm_utils.iter_files(
source_path=train_paths,
dest_path=kenlm_p.stdin,
tokenizer=tokenizer,
encoding_level=encoding_level,
is_aggregate_tokenizer=is_aggregate_tokenizer,
verbose=args.verbose,
)
kenlm_p.communicate()
if kenlm_p.returncode != 0:
raise RuntimeError("Training KenLM was not successful!")
""" BINARY BUILD """
kenlm_args = [
os.path.join(args.kenlm_bin_path, "build_binary"),
"trie",
arpa_file,
args.kenlm_model_file,
]
logging.info(f"Running binary_build command \n\n{' '.join(kenlm_args)}\n\n")
ret = subprocess.run(kenlm_args, capture_output=False, text=True, stdout=sys.stdout, stderr=sys.stderr)
if ret.returncode != 0:
raise RuntimeError("Training KenLM was not successful!")
if not args.preserve_arpa:
os.remove(arpa_file)
logging.info(f"Deleted the arpa file '{arpa_file}'.")
if __name__ == '__main__':
main()
|