File size: 5,833 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# USAGE: python get_aishell_data.py --data_root=<where to put data>

import argparse
import json
import logging
import os
import subprocess
import tarfile
import urllib.request

from tqdm import tqdm

parser = argparse.ArgumentParser(description="Aishell Data download")
parser.add_argument("--data_root", required=True, default=None, type=str)
args = parser.parse_args()

URL = {"data_aishell": "http://www.openslr.org/resources/33/data_aishell.tgz"}


def __retrieve_with_progress(source: str, filename: str):
    """
    Downloads source to destination
    Displays progress bar
    Args:
        source: url of resource
        destination: local filepath
    Returns:
    """
    with open(filename, "wb") as f:
        response = urllib.request.urlopen(source)
        total = response.length

        if total is None:
            f.write(response.content)
        else:
            with tqdm(total=total, unit="B", unit_scale=True, unit_divisor=1024) as pbar:
                for data in response:
                    f.write(data)
                    pbar.update(len(data))


def __maybe_download_file(destination: str, source: str):
    """
    Downloads source to destination if it doesn't exist.
    If exists, skips download
    Args:
        destination: local filepath
        source: url of resource

    Returns:

    """
    source = URL[source]
    if not os.path.exists(destination):
        logging.info("{0} does not exist. Downloading ...".format(destination))
        __retrieve_with_progress(source, filename=destination + ".tmp")
        os.rename(destination + ".tmp", destination)
        logging.info("Downloaded {0}.".format(destination))
    else:
        logging.info("Destination {0} exists. Skipping.".format(destination))
    return destination


def __extract_all_files(filepath: str, data_root: str, data_dir: str):
    if not os.path.exists(data_dir):
        extract_file(filepath, data_root)
        audio_dir = os.path.join(data_dir, "wav")
        for subfolder, _, filelist in os.walk(audio_dir):
            for ftar in filelist:
                extract_file(os.path.join(subfolder, ftar), subfolder)
    else:
        logging.info("Skipping extracting. Data already there %s" % data_dir)


def extract_file(filepath: str, data_dir: str):
    try:
        tar = tarfile.open(filepath)
        tar.extractall(data_dir)
        tar.close()
    except Exception:
        logging.info("Not extracting. Maybe already there?")


def __process_data(data_folder: str, dst_folder: str):
    """
    To generate manifest
    Args:
        data_folder: source with wav files
        dst_folder: where manifest files will be stored
    Returns:

    """

    if not os.path.exists(dst_folder):
        os.makedirs(dst_folder)

    transcript_file = os.path.join(data_folder, "transcript", "aishell_transcript_v0.8.txt")
    transcript_dict = {}
    with open(transcript_file, "r", encoding="utf-8") as f:
        for line in f:
            line = line.strip()
            audio_id, text = line.split(" ", 1)
            # remove white space
            text = text.replace(" ", "")
            transcript_dict[audio_id] = text

    data_types = ["train", "dev", "test"]
    vocab_count = {}
    for dt in data_types:
        json_lines = []
        audio_dir = os.path.join(data_folder, "wav", dt)
        for sub_folder, _, file_list in os.walk(audio_dir):
            for fname in file_list:
                audio_path = os.path.join(sub_folder, fname)
                audio_id = fname.strip(".wav")
                if audio_id not in transcript_dict:
                    continue
                text = transcript_dict[audio_id]
                for li in text:
                    vocab_count[li] = vocab_count.get(li, 0) + 1
                duration = subprocess.check_output("soxi -D {0}".format(audio_path), shell=True)
                duration = float(duration)
                json_lines.append(
                    json.dumps(
                        {"audio_filepath": os.path.abspath(audio_path), "duration": duration, "text": text,},
                        ensure_ascii=False,
                    )
                )

        manifest_path = os.path.join(dst_folder, dt + ".json")
        with open(manifest_path, "w", encoding="utf-8") as fout:
            for line in json_lines:
                fout.write(line + "\n")

    vocab = sorted(vocab_count.items(), key=lambda k: k[1], reverse=True)
    vocab_file = os.path.join(dst_folder, "vocab.txt")
    with open(vocab_file, "w", encoding="utf-8") as f:
        for v, c in vocab:
            f.write(v + "\n")


def main():
    data_root = args.data_root
    data_set = "data_aishell"
    logging.info("\n\nWorking on: {0}".format(data_set))
    file_path = os.path.join(data_root, data_set + ".tgz")
    logging.info("Getting {0}".format(data_set))
    __maybe_download_file(file_path, data_set)
    logging.info("Extracting {0}".format(data_set))
    data_folder = os.path.join(data_root, data_set)
    __extract_all_files(file_path, data_root, data_folder)
    logging.info("Processing {0}".format(data_set))
    __process_data(data_folder, data_folder)
    logging.info("Done!")


if __name__ == "__main__":
    main()