File size: 7,423 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# USAGE: python get_librispeech_data.py --data_root=<where to put data>
#        --data_set=<datasets_to_download> --num_workers=<number of parallel workers>
# where <datasets_to_download> can be: dev_clean, dev_other, test_clean,
# test_other, train_clean_100, train_clean_360, train_other_500 or ALL
# You can also put more than one data_set comma-separated:
# --data_set=dev_clean,train_clean_100
import argparse
import fnmatch
import functools
import json
import logging
import multiprocessing
import os
import subprocess
import tarfile
import urllib.request

from sox import Transformer
from tqdm import tqdm

parser = argparse.ArgumentParser(description="LibriSpeech Data download")
parser.add_argument("--data_root", required=True, default=None, type=str)
parser.add_argument("--data_sets", default="dev_clean", type=str)
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--log", dest="log", action="store_true", default=False)
args = parser.parse_args()

URLS = {
    "TRAIN_CLEAN_100": ("http://www.openslr.org/resources/12/train-clean-100.tar.gz"),
    "TRAIN_CLEAN_360": ("http://www.openslr.org/resources/12/train-clean-360.tar.gz"),
    "TRAIN_OTHER_500": ("http://www.openslr.org/resources/12/train-other-500.tar.gz"),
    "DEV_CLEAN": "http://www.openslr.org/resources/12/dev-clean.tar.gz",
    "DEV_OTHER": "http://www.openslr.org/resources/12/dev-other.tar.gz",
    "TEST_CLEAN": "http://www.openslr.org/resources/12/test-clean.tar.gz",
    "TEST_OTHER": "http://www.openslr.org/resources/12/test-other.tar.gz",
    "DEV_CLEAN_2": "https://www.openslr.org/resources/31/dev-clean-2.tar.gz",
    "TRAIN_CLEAN_5": "https://www.openslr.org/resources/31/train-clean-5.tar.gz",
}


def __retrieve_with_progress(source: str, filename: str):
    """
    Downloads source to destination
    Displays progress bar
    Args:
        source: url of resource
        destination: local filepath
    Returns:
    """
    with open(filename, "wb") as f:
        response = urllib.request.urlopen(source)
        total = response.length

        if total is None:
            f.write(response.content)
        else:
            with tqdm(total=total, unit="B", unit_scale=True, unit_divisor=1024) as pbar:
                for data in response:
                    f.write(data)
                    pbar.update(len(data))


def __maybe_download_file(destination: str, source: str):
    """
    Downloads source to destination if it doesn't exist.
    If exists, skips download
    Args:
        destination: local filepath
        source: url of resource
    Returns:
    """
    source = URLS[source]
    if not os.path.exists(destination):
        logging.info("{0} does not exist. Downloading ...".format(destination))

        __retrieve_with_progress(source, filename=destination + ".tmp")

        os.rename(destination + ".tmp", destination)
        logging.info("Downloaded {0}.".format(destination))
    else:
        logging.info("Destination {0} exists. Skipping.".format(destination))
    return destination


def __extract_file(filepath: str, data_dir: str):
    try:
        tar = tarfile.open(filepath)
        tar.extractall(data_dir)
        tar.close()
    except Exception:
        logging.info("Not extracting. Maybe already there?")


def __process_transcript(file_path: str, dst_folder: str):
    """
    Converts flac files to wav from a given transcript, capturing the metadata.
    Args:
        file_path: path to a source transcript  with flac sources
        dst_folder: path where wav files will be stored
    Returns:
        a list of metadata entries for processed files.
    """
    entries = []
    root = os.path.dirname(file_path)
    with open(file_path, encoding="utf-8") as fin:
        for line in fin:
            id, text = line[: line.index(" ")], line[line.index(" ") + 1 :]
            transcript_text = text.lower().strip()

            # Convert FLAC file to WAV
            flac_file = os.path.join(root, id + ".flac")
            wav_file = os.path.join(dst_folder, id + ".wav")
            if not os.path.exists(wav_file):
                Transformer().build(flac_file, wav_file)
            # check duration
            duration = subprocess.check_output("soxi -D {0}".format(wav_file), shell=True)

            entry = {}
            entry["audio_filepath"] = os.path.abspath(wav_file)
            entry["duration"] = float(duration)
            entry["text"] = transcript_text
            entries.append(entry)
    return entries


def __process_data(data_folder: str, dst_folder: str, manifest_file: str, num_workers: int):
    """
    Converts flac to wav and build manifests's json
    Args:
        data_folder: source with flac files
        dst_folder: where wav files will be stored
        manifest_file: where to store manifest
        num_workers: number of parallel workers processing files
    Returns:
    """

    if not os.path.exists(dst_folder):
        os.makedirs(dst_folder)

    files = []
    entries = []

    for root, dirnames, filenames in os.walk(data_folder):
        for filename in fnmatch.filter(filenames, "*.trans.txt"):
            files.append(os.path.join(root, filename))

    with multiprocessing.Pool(num_workers) as p:
        processing_func = functools.partial(__process_transcript, dst_folder=dst_folder)
        results = p.imap(processing_func, files)
        for result in tqdm(results, total=len(files)):
            entries.extend(result)

    with open(manifest_file, "w") as fout:
        for m in entries:
            fout.write(json.dumps(m) + "\n")


def main():
    data_root = args.data_root
    data_sets = args.data_sets
    num_workers = args.num_workers

    if args.log:
        logging.basicConfig(level=logging.INFO)

    if data_sets == "ALL":
        data_sets = "dev_clean,dev_other,train_clean_100,train_clean_360,train_other_500,test_clean,test_other"
    if data_sets == "mini":
        data_sets = "dev_clean_2,train_clean_5"
    for data_set in data_sets.split(","):
        logging.info("\n\nWorking on: {0}".format(data_set))
        filepath = os.path.join(data_root, data_set + ".tar.gz")
        logging.info("Getting {0}".format(data_set))
        __maybe_download_file(filepath, data_set.upper())
        logging.info("Extracting {0}".format(data_set))
        __extract_file(filepath, data_root)
        logging.info("Processing {0}".format(data_set))
        __process_data(
            os.path.join(os.path.join(data_root, "LibriSpeech"), data_set.replace("_", "-"),),
            os.path.join(os.path.join(data_root, "LibriSpeech"), data_set.replace("_", "-"),) + "-processed",
            os.path.join(data_root, data_set + ".json"),
            num_workers=num_workers,
        )
    logging.info("Done!")


if __name__ == "__main__":
    main()