File size: 4,210 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import os

import pandas as pd

from nemo.utils import logging


def main():
    parser = argparse.ArgumentParser(description="Convert kaldi data folder to manifest.json")
    parser.add_argument(
        "--data_dir", required=True, type=str, help="data in kaldi format",
    )
    parser.add_argument(
        "--manifest", required=True, type=str, help="path to store the manifest file",
    )
    parser.add_argument(
        "--with_aux_data",
        default=False,
        action="store_true",
        help="whether to include auxiliary data in the manifest",
    )
    args = parser.parse_args()

    kaldi_folder = args.data_dir
    required_data = {
        "audio_filepath": os.path.join(kaldi_folder, "wav.scp"),
        "duration": os.path.join(kaldi_folder, "segments"),
        "text": os.path.join(kaldi_folder, "text"),
    }
    aux_data = {
        "speaker": os.path.join(kaldi_folder, "utt2spk"),
        "gender": os.path.join(kaldi_folder, "utt2gender"),
    }
    output_names = list(required_data.keys())

    # check if required files exist
    for name, file in required_data.items():
        if not os.path.exists(file):
            raise ValueError(f"{os.path.basename(file)} is not in {kaldi_folder}.")

    # read wav.scp
    wavscp = pd.read_csv(required_data["audio_filepath"], sep=" ", header=None)
    if wavscp.shape[1] > 2:
        logging.warning(
            f"""More than two columns in 'wav.scp': {wavscp.shape[1]}.
            Maybe it contains pipes? Pipe processing can be slow at runtime."""
        )
        wavscp = pd.read_csv(
            required_data["audio_filepath"],
            sep="^([^ ]+) ",
            engine="python",
            header=None,
            usecols=[1, 2],
            names=["wav_label", "audio_filepath"],
        )
    else:
        wavscp = wavscp.rename(columns={0: "wav_label", 1: "audio_filepath"})

    # read text
    text = pd.read_csv(
        required_data["text"], sep="^([^ ]+) ", engine="python", header=None, usecols=[1, 2], names=["label", "text"],
    )

    # read segments
    segments = pd.read_csv(
        required_data["duration"], sep=" ", header=None, names=["label", "wav_label", "offset", "end"],
    )
    # add offset if needed
    if len(segments.offset) > len(segments.offset[segments.offset == 0.0]):
        logging.info("Adding offset field.")
        output_names.insert(2, "offset")
    segments["duration"] = (segments.end - segments.offset).round(decimals=3)

    # merge data
    wav_segments_text = pd.merge(
        pd.merge(segments, wavscp, how="inner", on="wav_label"), text, how="inner", on="label",
    )

    if args.with_aux_data:
        # check if auxiliary data is present
        for name, aux_file in aux_data.items():
            if os.path.exists(aux_file):
                logging.info(f"Adding info from '{os.path.basename(aux_file)}'.")
                wav_segments_text = pd.merge(
                    wav_segments_text,
                    pd.read_csv(aux_file, sep=" ", header=None, names=["label", name]),
                    how="left",
                    on="label",
                )
                output_names.append(name)
            else:
                logging.info(f"'{os.path.basename(aux_file)}' does not exist. Skipping ...")

    # write data to .json
    entries = wav_segments_text[output_names].to_dict(orient="records")
    with open(args.manifest, "w", encoding="utf-8") as fout:
        for m in entries:
            fout.write(json.dumps(m, ensure_ascii=False) + "\n")


if __name__ == "__main__":
    main()