File size: 17,978 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Usage:

python process_speech_commands_data.py \
    --data_root=<absolute path to where the data should be stored> \
    --data_version=<either 1 or 2, indicating version of the dataset> \
    --class_split=<either "all" or "sub", indicates whether all 30/35 classes should be used, or the 10+2 split should be used> \
    --num_processes=<number of processes to use for data preprocessing> \
    --rebalance \
    --log
"""

import argparse
import glob
import json
import logging
import os
import re
import tarfile
import urllib.request
from collections import defaultdict
from functools import partial
from multiprocessing import Pool
from typing import Dict, List, Set, Tuple

import librosa
import numpy as np
import soundfile
from tqdm import tqdm

URL_v1 = 'http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz'
URL_v2 = 'http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz'


def __maybe_download_file(destination: str, source: str) -> str:
    """
    Downloads source to destination if it doesn't exist.
    If exists, skips download

    Args:
        destination: local filepath
        source: url of resource

    Returns:
        Local filepath of the downloaded file
    """
    if not os.path.exists(destination):
        logging.info(f'{destination} does not exist. Downloading ...')
        urllib.request.urlretrieve(source, filename=destination + '.tmp')
        os.rename(destination + '.tmp', destination)
        logging.info(f'Downloaded {destination}.')
    else:
        logging.info(f'Destination {destination} exists. Skipping.')
    return destination


def __extract_all_files(filepath: str, data_dir: str):
    if not os.path.exists(data_dir):
        extract_file(filepath, data_dir)
    else:
        logging.info(f'Skipping extracting. Data already there {data_dir}')


def extract_file(filepath: str, data_dir: str):
    try:
        tar = tarfile.open(filepath)
        tar.extractall(data_dir)
        tar.close()
    except Exception:
        logging.info('Not extracting. Maybe already there?')


def __get_mp_chunksize(dataset_size: int, num_processes: int) -> int:
    """
    Returns the number of chunks to split the dataset into for multiprocessing.

    Args:
        dataset_size: size of the dataset
        num_processes: number of processes to use for multiprocessing

        Returns:
            Number of chunks to split the dataset into for multiprocessing
    """
    chunksize = dataset_size // num_processes
    return chunksize if chunksize > 0 else 1


def __construct_filepaths(
    all_files: List[str],
    valset_uids: Set[str],
    testset_uids: Set[str],
    class_split: str,
    class_subset: List[str],
    pattern: str,
) -> Tuple[Dict[str, int], Dict[str, List[tuple]], List[tuple], List[tuple], List[tuple], List[tuple], List[tuple]]:
    """
    Prepares the filepaths for the dataset.

    Args:
        all_files: list of all files in the dataset
        valset_uids: set of uids of files in the validation set
        testset_uids: set of uids of files in the test set
        class_split: whether to use all classes as distinct labels, or to use
            10 classes subset and rest of the classes as noise or background
        class_subset: list of classes to consider if `class_split` is set to `sub`
        pattern: regex pattern to match the file names in the dataset
    """

    label_count = defaultdict(int)
    label_filepaths = defaultdict(list)
    unknown_val_filepaths = []
    unknown_test_filepaths = []

    train, val, test = [], [], []
    for entry in all_files:
        r = re.match(pattern, entry)
        if r:
            label, uid = r.group(2), r.group(3)

            if label == '_background_noise_' or label == 'silence':
                continue

        if class_split == 'sub' and label not in class_subset:
            label = 'unknown'

            if uid in valset_uids:
                unknown_val_filepaths.append((label, entry))
            elif uid in testset_uids:
                unknown_test_filepaths.append((label, entry))

        if uid not in valset_uids and uid not in testset_uids:
            label_count[label] += 1
            label_filepaths[label].append((label, entry))

        if label == 'unknown':
            continue

        if uid in valset_uids:
            val.append((label, entry))
        elif uid in testset_uids:
            test.append((label, entry))
        else:
            train.append((label, entry))

    return {
        'label_count': label_count,
        'label_filepaths': label_filepaths,
        'unknown_val_filepaths': unknown_val_filepaths,
        'unknown_test_filepaths': unknown_test_filepaths,
        'train': train,
        'val': val,
        'test': test,
    }


def __construct_silence_set(
    rng: np.random.RandomState, sampling_rate: int, silence_stride: int, data_folder: str, background_noise: str
) -> List[str]:
    """
    Creates silence files given a background noise.

    Args:
        rng: Random state for random number generator
        sampling_rate: sampling rate of the audio
        silence_stride: stride for creating silence files
        data_folder: folder containing the silence directory
        background_noise: filepath of the background noise

    Returns:
        List of filepaths of silence files
    """
    silence_files = []
    if '.wav' in background_noise:
        y, sr = librosa.load(background_noise, sr=sampling_rate)

        for i in range(0, len(y) - sampling_rate, silence_stride):
            file_path = f'silence/{os.path.basename(background_noise)[:-4]}_{i}.wav'
            y_slice = y[i : i + sampling_rate] * rng.uniform(0.0, 1.0)
            out_file_path = os.path.join(data_folder, file_path)
            soundfile.write(out_file_path, y_slice, sr)

            silence_files.append(('silence', out_file_path))

    return silence_files


def __rebalance_files(max_count: int, label_filepath: str) -> Tuple[str, List[str], int]:
    """
    Rebalance the number of samples for a class.

    Args:
        max_count: maximum number of samples for a class
        label_filepath: list of filepaths for a class

    Returns:
        Rebalanced list of filepaths along with the label name and the number of samples
    """
    command, samples = label_filepath
    filepaths = [sample[1] for sample in samples]

    rng = np.random.RandomState(0)
    filepaths = np.asarray(filepaths)
    num_samples = len(filepaths)

    if num_samples < max_count:
        difference = max_count - num_samples
        duplication_ids = rng.choice(num_samples, difference, replace=True)
        filepaths = np.append(filepaths, filepaths[duplication_ids], axis=0)

    return command, filepaths, num_samples


def __prepare_metadata(skip_duration, sample: Tuple[str, str]) -> dict:
    """
    Creates the manifest entry for a file.

    Args:
        skip_duration: Whether to skip the computation of duration
        sample: Tuple of label and filepath

    Returns:
        Manifest entry of the file
    """
    label, audio_path = sample
    return json.dumps(
        {
            'audio_filepath': audio_path,
            'duration': 0.0 if skip_duration else librosa.core.get_duration(filename=audio_path),
            'command': label,
        }
    )


def __process_data(
    data_folder: str,
    dst_folder: str,
    num_processes: int = 1,
    rebalance: bool = False,
    class_split: str = 'all',
    skip_duration: bool = False,
):
    """
    Processes the data and generates the manifests.

    Args:
        data_folder: source with wav files and validation / test lists
        dst_folder: where manifest files will be stored
        num_processes: number of processes
        rebalance: rebalance the classes to have same number of samples
        class_split: whether to use all classes as distinct labels, or to use
            10 classes subset and rest of the classes as noise or background
        skip_duration: Bool whether to skip duration computation. Use this only for
            colab notebooks where knowing duration is not necessary for demonstration
    """

    os.makedirs(dst_folder, exist_ok=True)

    # Used for 10 classes + silence + unknown class setup - Only used when class_split is 'sub'
    class_subset = ['yes', 'no', 'up', 'down', 'left', 'right', 'on', 'off', 'stop', 'go']

    pattern = re.compile(r'(.+\/)?(\w+)\/([^_]+)_.+wav')
    all_files = glob.glob(os.path.join(data_folder, '*/*wav'))

    # Get files in the validation set
    valset_uids = set()
    with open(os.path.join(data_folder, 'validation_list.txt')) as fin:
        for line in fin:
            r = re.match(pattern, line)
            if r:
                valset_uids.add(r.group(3))

    # Get files in the test set
    testset_uids = set()
    with open(os.path.join(data_folder, 'testing_list.txt')) as fin:
        for line in fin:
            r = re.match(pattern, line)
            if r:
                testset_uids.add(r.group(3))

    logging.info('Validation and test set lists extracted')

    filepath_info = __construct_filepaths(all_files, valset_uids, testset_uids, class_split, class_subset, pattern)
    label_count = filepath_info['label_count']
    label_filepaths = filepath_info['label_filepaths']
    unknown_val_filepaths = filepath_info['unknown_val_filepaths']
    unknown_test_filepaths = filepath_info['unknown_test_filepaths']
    train = filepath_info['train']
    val = filepath_info['val']
    test = filepath_info['test']

    logging.info('Prepared filepaths for dataset')

    pool = Pool(num_processes)

    # Add silence and unknown class label samples
    if class_split == 'sub':
        logging.info('Perforiming 10+2 class subsplit')

        silence_path = os.path.join(data_folder, 'silence')
        os.makedirs(silence_path, exist_ok=True)

        silence_stride = 1000  # 0.0625 second stride
        sampling_rate = 16000
        folder = os.path.join(data_folder, '_background_noise_')

        silence_files = []
        rng = np.random.RandomState(0)

        background_noise_files = [os.path.join(folder, x) for x in os.listdir(folder)]
        silence_set_fn = partial(__construct_silence_set, rng, sampling_rate, silence_stride, data_folder)
        for silence_flist in tqdm(
            pool.imap(
                silence_set_fn, background_noise_files, __get_mp_chunksize(len(background_noise_files), num_processes)
            ),
            total=len(background_noise_files),
            desc='Constructing silence set',
        ):
            silence_files.extend(silence_flist)

        rng = np.random.RandomState(0)
        rng.shuffle(silence_files)
        logging.info(f'Constructed silence set of {len(silence_files)}')

        # Create the splits
        rng = np.random.RandomState(0)
        silence_split = 0.1
        unknown_split = 0.1

        # train split
        num_total_samples = sum([label_count[cls] for cls in class_subset])
        num_silence_samples = int(np.ceil(silence_split * num_total_samples))

        # initialize sample
        label_count['silence'] = 0
        label_filepaths['silence'] = []

        for silence_id in range(num_silence_samples):
            label_count['silence'] += 1
            label_filepaths['silence'].append(silence_files[silence_id])

        train.extend(label_filepaths['silence'])

        # Update train unknown set
        unknown_train_samples = label_filepaths['unknown']

        rng.shuffle(unknown_train_samples)
        unknown_size = int(np.ceil(unknown_split * num_total_samples))

        label_count['unknown'] = unknown_size
        label_filepaths['unknown'] = unknown_train_samples[:unknown_size]

        train.extend(label_filepaths['unknown'])

        logging.info('Train set prepared')

        # val set silence
        num_val_samples = len(val)
        num_silence_samples = int(np.ceil(silence_split * num_val_samples))

        val_idx = label_count['silence'] + 1
        for silence_id in range(num_silence_samples):
            val.append(silence_files[val_idx + silence_id])

        # Update val unknown set
        rng.shuffle(unknown_val_filepaths)
        unknown_size = int(np.ceil(unknown_split * num_val_samples))

        val.extend(unknown_val_filepaths[:unknown_size])

        logging.info('Validation set prepared')

        # test set silence
        num_test_samples = len(test)
        num_silence_samples = int(np.ceil(silence_split * num_test_samples))

        test_idx = val_idx + num_silence_samples + 1
        for silence_id in range(num_silence_samples):
            test.append(silence_files[test_idx + silence_id])

        # Update test unknown set
        rng.shuffle(unknown_test_filepaths)
        unknown_size = int(np.ceil(unknown_split * num_test_samples))

        test.extend(unknown_test_filepaths[:unknown_size])

        logging.info('Test set prepared')

    max_command = None
    max_count = -1
    for command, count in label_count.items():
        if command == 'unknown':
            continue

        if count > max_count:
            max_count = count
            max_command = command

    if rebalance:
        logging.info(f'Command with maximum number of samples = {max_command} with {max_count} samples')
        logging.info(f'Rebalancing dataset by duplicating classes with less than {max_count} samples...')

        rebalance_fn = partial(__rebalance_files, max_count)
        for command, filepaths, num_samples in tqdm(
            pool.imap(rebalance_fn, label_filepaths.items(), __get_mp_chunksize(len(label_filepaths), num_processes)),
            total=len(label_filepaths),
            desc='Rebalancing dataset',
        ):
            if num_samples < max_count:
                logging.info(f'Extended class label {command} from {num_samples} samples to {len(filepaths)} samples')
                label_filepaths[command] = [(command, filepath) for filepath in filepaths]

        del train
        train = []
        for label, samples in label_filepaths.items():
            train.extend(samples)

    manifests = [
        ('train_manifest.json', train),
        ('validation_manifest.json', val),
        ('test_manifest.json', test),
    ]

    metadata_fn = partial(__prepare_metadata, skip_duration)
    for manifest_filename, dataset in manifests:
        num_files = len(dataset)

        logging.info(f'Preparing manifest : {manifest_filename} with #{num_files} files')

        manifest = [
            metadata
            for metadata in tqdm(
                pool.imap(metadata_fn, dataset, __get_mp_chunksize(len(dataset), num_processes)),
                total=num_files,
                desc=f'Preparing {manifest_filename}',
            )
        ]

        with open(os.path.join(dst_folder, manifest_filename), 'w') as fout:
            for metadata in manifest:
                fout.write(metadata + '\n')

        logging.info(f'Finished construction of manifest. Path: {os.path.join(dst_folder, manifest_filename)}')

    pool.close()

    if skip_duration:
        logging.info(
            f'\n<<NOTE>> Duration computation was skipped for demonstration purposes on Colaboratory.\n'
            f'In order to replicate paper results and properly perform data augmentation, \n'
            f'please recompute the manifest file without the `--skip_duration` flag !\n'
        )


def main():
    parser = argparse.ArgumentParser(description='Google Speech Commands Data download and preprocessing')
    parser.add_argument('--data_root', required=True, help='Root directory for storing data')
    parser.add_argument(
        '--data_version',
        required=True,
        default=1,
        type=int,
        choices=[1, 2],
        help='Version of the speech commands dataset to download',
    )
    parser.add_argument(
        '--class_split', default='all', choices=['all', 'sub'], help='Whether to consider all classes or only a subset'
    )
    parser.add_argument('--num_processes', default=1, type=int, help='Number of processes')
    parser.add_argument('--rebalance', action='store_true', help='Rebalance the number of samples in each class')
    parser.add_argument('--skip_duration', action='store_true', help='Skip computing duration of audio files')
    parser.add_argument('--log', action='store_true', help='Generate logs')
    args = parser.parse_args()

    if args.log:
        logging.basicConfig(level=logging.DEBUG)

    data_root = args.data_root
    data_set = f'google_speech_recognition_v{args.data_version}'
    data_folder = os.path.join(data_root, data_set)

    logging.info(f'Working on: {data_set}')

    URL = URL_v1 if args.data_version == 1 else URL_v2

    # Download and extract
    if not os.path.exists(data_folder):
        file_path = os.path.join(data_root, data_set + '.tar.bz2')
        logging.info(f'Getting {data_set}')
        __maybe_download_file(file_path, URL)
        logging.info(f'Extracting {data_set}')
        __extract_all_files(file_path, data_folder)

    logging.info(f'Processing {data_set}')
    __process_data(
        data_folder,
        data_folder,
        num_processes=args.num_processes,
        rebalance=args.rebalance,
        class_split=args.class_split,
        skip_duration=args.skip_duration,
    )
    logging.info('Done!')


if __name__ == '__main__':
    main()