File size: 6,005 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Disclaimer:
# Each user is responsible for checking the content of datasets and the applicable licenses and determining if suitable for the intended use.
import argparse
import json
import os
import random
import subprocess
import tarfile
import urllib.request
from pathlib import Path
import numpy as np
from nemo_text_processing.text_normalization.normalize import Normalizer
from opencc import OpenCC
URL = "https://www.openslr.org/resources/93/data_aishell3.tgz"
def get_args():
parser = argparse.ArgumentParser(
description='Prepare SF_bilingual dataset and create manifests with predefined split'
)
parser.add_argument(
"--data-root",
type=Path,
help="where the dataset will reside",
default="./DataChinese/sf_bilingual_speech_zh_en_vv1/SF_bilingual/",
)
parser.add_argument(
"--manifests-path", type=Path, help="where the resulting manifests files will reside", default="./"
)
parser.add_argument("--val-size", default=0.01, type=float, help="eval set split")
parser.add_argument("--test-size", default=0.01, type=float, help="test set split")
parser.add_argument(
"--seed-for-ds-split",
default=100,
type=float,
help="Seed for deterministic split of train/dev/test, NVIDIA's default is 100",
)
args = parser.parse_args()
return args
def __maybe_download_file(source_url, destination_path):
if not destination_path.exists():
tmp_file_path = destination_path.with_suffix('.tmp')
urllib.request.urlretrieve(source_url, filename=str(tmp_file_path))
tmp_file_path.rename(destination_path)
def __extract_file(filepath, data_dir):
try:
tar = tarfile.open(filepath)
tar.extractall(data_dir)
tar.close()
except Exception:
print(f"Error while extracting {filepath}. Already extracted?")
def __process_transcript(file_path: str):
# Create directory for processed wav files
Path(file_path / "processed").mkdir(parents=True, exist_ok=True)
# Create zh-TW to zh-simplify converter
cc = OpenCC('t2s')
# Create normalizer
text_normalizer = Normalizer(
lang="zh", input_case="cased", overwrite_cache=True, cache_dir=str(file_path / "cache_dir"),
)
text_normalizer_call_kwargs = {"punct_pre_process": True, "punct_post_process": True}
normalizer_call = lambda x: text_normalizer.normalize(x, **text_normalizer_call_kwargs)
entries = []
SPEAKER_LEN = 7
candidates = []
speakers = set()
with open(file_path / "train" / "content.txt", encoding="utf-8") as fin:
for line in fin:
content = line.split()
wav_name, text = content[0], "".join(content[1::2]) + "。"
wav_name = wav_name.replace(u'\ufeff', '')
speaker = wav_name[:SPEAKER_LEN]
speakers.add(speaker)
wav_file = file_path / "train" / "wav" / speaker / wav_name
assert os.path.exists(wav_file), f"{wav_file} not found!"
duration = subprocess.check_output(f"soxi -D {wav_file}", shell=True)
if float(duration) <= 3.0: # filter out wav files shorter than 3 seconds
continue
processed_file = file_path / "processed" / wav_name
# convert wav to mono 22050HZ, 16 bit (as SFSpeech dataset)
subprocess.run(f"sox {wav_file} -r 22050 -c 1 -b 16 {processed_file}", shell=True)
candidates.append((processed_file, duration, text, speaker))
# remapping the speakder to speaker_id (start from 1)
remapping = {}
for index, speaker in enumerate(sorted(speakers)):
remapping[speaker] = index + 1
for processed_file, duration, text, speaker in candidates:
simplified_text = cc.convert(text)
normalized_text = normalizer_call(simplified_text)
entry = {
'audio_filepath': os.path.abspath(processed_file),
'duration': float(duration),
'text': text,
'normalized_text': normalized_text,
'speaker_raw': speaker,
'speaker': remapping[speaker],
}
entries.append(entry)
return entries
def __process_data(dataset_path, val_size, test_size, seed_for_ds_split, manifests_dir):
entries = __process_transcript(dataset_path)
random.Random(seed_for_ds_split).shuffle(entries)
train_size = 1.0 - val_size - test_size
train_entries, validate_entries, test_entries = np.split(
entries, [int(len(entries) * train_size), int(len(entries) * (train_size + val_size))]
)
assert len(train_entries) > 0, "Not enough data for train, val and test"
def save(p, data):
with open(p, 'w') as f:
for d in data:
f.write(json.dumps(d) + '\n')
save(manifests_dir / "train_manifest.json", train_entries)
save(manifests_dir / "val_manifest.json", validate_entries)
save(manifests_dir / "test_manifest.json", test_entries)
def main():
args = get_args()
tarred_data_path = args.data_root / "data_aishell3.tgz"
__maybe_download_file(URL, tarred_data_path)
__extract_file(str(tarred_data_path), str(args.data_root))
__process_data(
args.data_root, args.val_size, args.test_size, args.seed_for_ds_split, args.manifests_path,
)
if __name__ == "__main__":
main()
|