File size: 5,145 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This script is to compute speaker-level statistics, such as pitch mean & standard deviation, for a given
TTS training manifest.

This script should be run after extract_sup_data.py as it uses the precomputed supplemental features.

$ python <nemo_root_path>/scripts/dataset_processing/tts/compute_speaker_stats.py \
    --manifest_path=<data_root_path>/fastpitch_manifest.json \
    --sup_data_path=<data_root_path>/sup_data \
    --pitch_stats_path=<data_root_path>/pitch_stats.json
"""

import argparse
import json
import os
from collections import defaultdict
from pathlib import Path
from typing import List, Tuple

import torch
from tqdm import tqdm

from nemo.collections.asr.parts.utils.manifest_utils import read_manifest
from nemo.collections.tts.parts.utils.tts_dataset_utils import get_base_dir
from nemo.collections.tts.torch.tts_data_types import Pitch
from nemo.utils import logging


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Compute speaker level pitch statistics.",
    )
    parser.add_argument(
        "--manifest_path", required=True, type=Path, help="Path to training manifest.",
    )
    parser.add_argument(
        "--sup_data_path", default=Path("sup_data"), type=Path, help="Path to base directory with supplementary data.",
    )
    parser.add_argument(
        "--pitch_stats_path",
        default=Path("pitch_stats.json"),
        type=Path,
        help="Path to output JSON file with speaker pitch statistics.",
    )
    args = parser.parse_args()
    return args


def _compute_stats(values: List[torch.Tensor]) -> Tuple[float, float]:
    values_tensor = torch.cat(values, dim=0)
    mean = values_tensor.mean().item()
    std = values_tensor.std(dim=0).item()
    return mean, std


def _get_sup_data_filepath(manifest_entry: dict, audio_dir: Path, sup_data_dir: Path) -> Path:
    """
    Get the absolute path of a supplementary data type for the input manifest entry.

    Example: audio_filepath "<audio_dir>/speaker1/audio1.wav" becomes "<sup_data_dir>/speaker1_audio1.pt"

    Args:
        manifest_entry: Manifest entry dictionary.
        audio_dir: base directory where audio is stored.
        sup_data_dir: base directory where supplementary data is stored.

    Returns:
        Path to the supplementary data file.
    """
    audio_path = Path(manifest_entry["audio_filepath"])
    rel_audio_path = audio_path.relative_to(audio_dir)
    rel_sup_data_path = rel_audio_path.with_suffix(".pt")
    sup_data_filename = str(rel_sup_data_path).replace(os.sep, "_")
    sup_data_filepath = sup_data_dir / sup_data_filename
    return sup_data_filepath


def main():
    args = get_args()
    manifest_path = args.manifest_path
    sup_data_path = args.sup_data_path
    pitch_stats_path = args.pitch_stats_path

    pitch_data_path = Path(os.path.join(sup_data_path, Pitch.name))
    if not os.path.exists(pitch_data_path):
        raise ValueError(
            f"Pitch directory {pitch_data_path} does not exist. Make sure 'sup_data_path' is correct "
            f"and that you have computed the pitch using extract_sup_data.py"
        )

    entries = read_manifest(manifest_path)

    audio_paths = [entry["audio_filepath"] for entry in entries]
    base_dir = get_base_dir(audio_paths)

    global_pitch_values = []
    speaker_pitch_values = defaultdict(list)
    for entry in tqdm(entries):
        pitch_path = _get_sup_data_filepath(manifest_entry=entry, audio_dir=base_dir, sup_data_dir=pitch_data_path)
        if not os.path.exists(pitch_path):
            logging.warning(f"Unable to find pitch file for {entry}")
            continue

        pitch = torch.load(pitch_path)
        # Filter out non-speech frames
        pitch = pitch[pitch != 0]
        global_pitch_values.append(pitch)
        if "speaker" in entry:
            speaker_id = entry["speaker"]
            speaker_pitch_values[speaker_id].append(pitch)

    global_pitch_mean, global_pitch_std = _compute_stats(global_pitch_values)
    pitch_stats = {"default": {"pitch_mean": global_pitch_mean, "pitch_std": global_pitch_std}}
    for speaker_id, pitch_values in speaker_pitch_values.items():
        pitch_mean, pitch_std = _compute_stats(pitch_values)
        pitch_stats[speaker_id] = {"pitch_mean": pitch_mean, "pitch_std": pitch_std}

    with open(pitch_stats_path, 'w', encoding="utf-8") as stats_f:
        json.dump(pitch_stats, stats_f, indent=4)


if __name__ == "__main__":
    main()