File size: 5,028 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import multiprocessing as mp
import os

import numpy as np
from matplotlib import pyplot as plt

from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer

# =============================================================================#
# Auxiliary methods
# =============================================================================#

worker_data = {
    "tokenizer": None,
}


def init_tokenizer(library, tokenizer_model):
    tokenizer = get_nmt_tokenizer(library=library, tokenizer_model=tokenizer_model)
    worker_data["tokenizer"] = tokenizer


def read_batch(fh, batch_size):
    """
    Reads a batch (or smaller) chunk of lines.
    """
    lines = []
    for i in range(batch_size):
        l = fh.readline()
        if not l:
            break
        else:
            lines.append(l.strip())

    return lines


def tokenize_line(line, tokenizer):
    """
    Returns a tokenized line
    """
    line = line.rstrip("\n")
    tokens = tokenizer.text_to_ids(line)

    return tokens


def line_len(line, tokenizer=None):
    """
    Returns a tokenized length of a text line
    """
    if tokenizer is None:
        tokenizer = worker_data["tokenizer"]

    tokens = tokenize_line(line, tokenizer)

    return len(tokens)


# =============================================================================#
# Main script
# =============================================================================#
if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Collects statistics over tokenized dataset')
    parser.add_argument('input_files', metavar='N', type=str, nargs='+', help='Input files to parse')
    parser.add_argument(
        '--tokenizer_library', type=str, required=True, help='Path to pre-trained nemo-supported tokenizer model'
    )
    parser.add_argument(
        '--tokenizer_model', type=str, required=True, help='Path to pre-trained nemo-supported tokenizer model'
    )
    parser.add_argument(
        '--num_workers', type=int, default=mp.cpu_count(), help='Number of workers (default to number of CPUs)'
    )
    parser.add_argument('--max_lines', type=int, default=-1, help='Max number of lines to parse')
    parser.add_argument('--batch_size', type=int, default=10000000, help='Batch size to parse in parallel')
    parser.add_argument('--out_dir', type=str, default="", help='Path to store data and plots')

    args = parser.parse_args()

    tokenizer = get_nmt_tokenizer(library=args.tokenizer_library, tokenizer_model=args.tokenizer_model,)

    all_len = []

    for fn in args.input_files:
        print(f"Parsing fn = {fn}")
        # read file
        fh = open(fn)

        # read all batches
        while True:
            lines = read_batch(fh, args.batch_size)

            # move to next file when no lines are read
            if not lines:
                break

            # tokenize lines
            with mp.Pool(
                args.num_workers, initializer=init_tokenizer, initargs=(args.tokenizer_library, args.tokenizer_model)
            ) as p:
                all_len.extend(p.map(line_len, lines))

            print(f"{fn}: Parsed {len(all_len)} lines")

            # early stop, if required
            if (args.max_lines > 0) and (len(all_len) >= args.max_lines):
                lines = lines[: args.max_lines]
                break

        # early stop, if required
        if (args.max_lines > 0) and (len(all_len) >= args.max_lines):
            lines = lines[: args.max_lines]
            break

    # compute stats

    # save all results
    if args.out_dir:
        os.makedirs(args.out_dir, exist_ok=True)

    stats = {
        "samples": int(len(all_len)),
        "mean": float(np.mean(all_len)),
        "stdev": float(np.std(all_len)),
        "min": float(np.min(all_len)),
        "max": float(np.max(all_len)),
        "median": float(np.median(all_len)),
    }

    print(f"stats = \n{stats}")

    # save all results
    if args.out_dir:
        if not os.path.exists(args.out_dir):
            os.makedirs(args.out_dir, exist_ok=True)

        fh = open(os.path.join(args.out_dir, "lengths.txt"), "w")
        fh.writelines(["{l}\n".format(l=l) for l in all_len])

        json.dump(stats, open(os.path.join(args.out_dir, "stats.json"), "w"))

        fig = plt.hist(all_len)
        plt.savefig(os.path.join(args.out_dir, "lengths_hist.pdf"))