File size: 5,028 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import multiprocessing as mp
import os
import numpy as np
from matplotlib import pyplot as plt
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
# =============================================================================#
# Auxiliary methods
# =============================================================================#
worker_data = {
"tokenizer": None,
}
def init_tokenizer(library, tokenizer_model):
tokenizer = get_nmt_tokenizer(library=library, tokenizer_model=tokenizer_model)
worker_data["tokenizer"] = tokenizer
def read_batch(fh, batch_size):
"""
Reads a batch (or smaller) chunk of lines.
"""
lines = []
for i in range(batch_size):
l = fh.readline()
if not l:
break
else:
lines.append(l.strip())
return lines
def tokenize_line(line, tokenizer):
"""
Returns a tokenized line
"""
line = line.rstrip("\n")
tokens = tokenizer.text_to_ids(line)
return tokens
def line_len(line, tokenizer=None):
"""
Returns a tokenized length of a text line
"""
if tokenizer is None:
tokenizer = worker_data["tokenizer"]
tokens = tokenize_line(line, tokenizer)
return len(tokens)
# =============================================================================#
# Main script
# =============================================================================#
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Collects statistics over tokenized dataset')
parser.add_argument('input_files', metavar='N', type=str, nargs='+', help='Input files to parse')
parser.add_argument(
'--tokenizer_library', type=str, required=True, help='Path to pre-trained nemo-supported tokenizer model'
)
parser.add_argument(
'--tokenizer_model', type=str, required=True, help='Path to pre-trained nemo-supported tokenizer model'
)
parser.add_argument(
'--num_workers', type=int, default=mp.cpu_count(), help='Number of workers (default to number of CPUs)'
)
parser.add_argument('--max_lines', type=int, default=-1, help='Max number of lines to parse')
parser.add_argument('--batch_size', type=int, default=10000000, help='Batch size to parse in parallel')
parser.add_argument('--out_dir', type=str, default="", help='Path to store data and plots')
args = parser.parse_args()
tokenizer = get_nmt_tokenizer(library=args.tokenizer_library, tokenizer_model=args.tokenizer_model,)
all_len = []
for fn in args.input_files:
print(f"Parsing fn = {fn}")
# read file
fh = open(fn)
# read all batches
while True:
lines = read_batch(fh, args.batch_size)
# move to next file when no lines are read
if not lines:
break
# tokenize lines
with mp.Pool(
args.num_workers, initializer=init_tokenizer, initargs=(args.tokenizer_library, args.tokenizer_model)
) as p:
all_len.extend(p.map(line_len, lines))
print(f"{fn}: Parsed {len(all_len)} lines")
# early stop, if required
if (args.max_lines > 0) and (len(all_len) >= args.max_lines):
lines = lines[: args.max_lines]
break
# early stop, if required
if (args.max_lines > 0) and (len(all_len) >= args.max_lines):
lines = lines[: args.max_lines]
break
# compute stats
# save all results
if args.out_dir:
os.makedirs(args.out_dir, exist_ok=True)
stats = {
"samples": int(len(all_len)),
"mean": float(np.mean(all_len)),
"stdev": float(np.std(all_len)),
"min": float(np.min(all_len)),
"max": float(np.max(all_len)),
"median": float(np.median(all_len)),
}
print(f"stats = \n{stats}")
# save all results
if args.out_dir:
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir, exist_ok=True)
fh = open(os.path.join(args.out_dir, "lengths.txt"), "w")
fh.writelines(["{l}\n".format(l=l) for l in all_len])
json.dump(stats, open(os.path.join(args.out_dir, "stats.json"), "w"))
fig = plt.hist(all_len)
plt.savefig(os.path.join(args.out_dir, "lengths_hist.pdf"))
|