File size: 17,478 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is the script to build Faiss retrieval index for KNN look up.
For more information about Faiss, check https://faiss.ai/
It requires the retrieval DB text data to be converted into `bin` and `idx` files by `preprocess_data_for_megatron.py` script.
Here is an example to using it:
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--input_file=PATH_TO_DB_FILE \
--tokenizer-library=sentencepiece \
--tokenizer-model=tokenizer.model \
--train_index_size=128000 \
--train_chunk_size=51200 \
--devices=0,1,2,3 \
--batch_size=1280 \
--output_file=index.sav
```
It creates a index.sav which can be loaded by Faiss. It can look up the KNN chunk ids of the
DB dataset given the input embedding vector.
To use it in multiple stages, it follows the example as shown in
https://github.com/facebookresearch/faiss/blob/main/demos/demo_ondisk_ivf.py
stage-0: train on the dataset, example,
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--input_file=PATH_TO_DB_FILE \
--tokenizer-library=sentencepiece \
--tokenizer-model=tokenizer.model \
--train_index_size=128000 \
--train_chunk_size=51200 \
--workers=2 \
--devices=0,1,2,3 \
--percent=0.9 \
--stage=0 \
--output_file=index_learned.save
```
stage-1: build partial indexes, each containing a fraction of the dataset. This can be done in parallel on several machines. example,
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--input_file=PATH_TO_DB_FILE \
--tokenizer-library=sentencepiece \
--tokenizer-model=tokenizer.model \
--train_index_size=128000 \
--train_chunk_size=51200 \
--workers=2 \
--devices=0,1,2,3 \
--percent=0.9 \
--stage=1 \
--shard_id=0 \
--total_shards=10 \
--learned_index=index_learned.save \
--output_file=index_shard2.save
```
stage-2: merge the shard indexes into one that is written directly to disk (needs not to fit in RAM), example
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--stage=2 \
--learned_index=index_learned.save \
--shard_index_input=index_shard \
--output_file=index_final.save
```
"""
import argparse
import multiprocessing
import pathlib
import sys
import time
from multiprocessing import Pool
from typing import Union
import faiss
import numpy as np
import torch
from faiss.contrib.ondisk import merge_ondisk
from sentence_transformers import SentenceTransformer
from nemo.collections.nlp.data.language_modeling.megatron.indexed_retrieval_dataset import MMapRetrievalIndexedDataset
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.utils import logging
QUEUE_SIZE = 30
queue = multiprocessing.Queue(QUEUE_SIZE)
emb_queue = multiprocessing.Queue(QUEUE_SIZE)
def get_tokenizer(args):
tokenizer = get_nmt_tokenizer(
library=args.tokenizer_library,
model_name=args.tokenizer_type,
tokenizer_model=args.tokenizer_model,
vocab_file=args.vocab_file,
merges_file=args.merge_file,
delimiter=args.delimiter,
)
if not hasattr(tokenizer, "pad_id"):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
elif hasattr(tokenizer, "pad_id") and (tokenizer.pad_id is None or tokenizer.pad_id < 0):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
return tokenizer
def process_sentence_chunks(
ds: MMapRetrievalIndexedDataset,
tokenizer,
chunk_size: int,
warm_up_size: int,
percent: float,
stage: Union[int, None],
workers: int,
shard_id: int,
total_shards: int,
):
"""
This function takes chunked tokens from the retrieval dataset and map it back to text.
In stage 0, it only loads the first `warm_up_size` chunks that is used for building the Faiss index structure.
In other stages, in addition to the warm_up_size chunks, it also sends the chunked text and add their embeddings into the index.
In stage 1, it divides the total work into `total_shards`, and process only at the `shard_id`. If the stage is None, it process all the chunks.
"""
total_chunks = ds.chunks
num_docs = len(ds._index.sizes)
assert len(ds._index.sizes) == len(ds._index._chunk_id_start)
if percent < 1.0:
use_num_docs = int(num_docs * percent)
logging.info(f"Use {use_num_docs} out of {num_docs} docs to build index")
total_chunks = ds._index._chunk_id_start[min(use_num_docs, num_docs - 1)]
logging.info(f"{total_chunks} chunks are used to build the index")
start = 0
if stage is None or stage == 0:
beg = time.time()
# only prepare the warmup batch for stage None and stage 0
assert warm_up_size < total_chunks
warm_chunk_ids = np.random.randint(0, total_chunks, warm_up_size)
warm_up_slices = []
for warm_up_id in warm_chunk_ids:
warm_up_slices.append(ds.get_chunk(warm_up_id, force_no_cont_ids=True))
with Pool(workers) as p:
sentences = p.map(tokenizer.ids_to_text, warm_up_slices)
end = time.time()
logging.info(f"token-to-text {total_chunks} chunks takes {end-beg}")
queue.put((sentences, None))
if stage == 0:
# first the task for stage 0
queue.put((None, None))
return
elif stage == 1:
shard_size = total_chunks // total_shards
splits = list(range(0, total_chunks, shard_size))
if shard_id < total_shards - 1:
start = splits[shard_id]
total_chunks = splits[shard_id + 1]
elif shard_id == total_shards - 1:
start = splits[shard_id]
total_chunks = total_chunks
else:
raise ValueError(f'{shard_id} bigger than {total_shards}')
logging.info(f'shard_id {shard_id}, create index from chunk {start} to {total_chunks}')
threshold = 0.1
with Pool(workers) as p:
while start < total_chunks:
if start / total_chunks > threshold:
logging.info(f"sentence processing {start / total_chunks} is done")
threshold += 0.1
slice_id = (start, min(start + chunk_size, total_chunks))
beg = time.time()
id_slices = ds.get_chunk(slice(*slice_id), force_no_cont_ids=True)
end = time.time()
logging.info(f"load {chunk_size} chunks takes {end-beg}")
start = min(start + chunk_size, total_chunks)
sentences = p.map(tokenizer.ids_to_text, id_slices)
end2 = time.time()
logging.info(f"tokenize {chunk_size} chunks takes {end2-end}")
queue.put((sentences, slice_id))
queue.put((None, None))
def get_sentence_chunks():
return queue.get()
def calculate_embedding(pool, batch_size):
while True:
sentences, slice_id = get_sentence_chunks()
if sentences is None:
break
beg = time.time()
emb = model.encode_multi_process(sentences=sentences, pool=pool, batch_size=batch_size)
end = time.time()
logging.info(f"one embedding {len(emb)} batch size takes {end-beg}")
emb_queue.put((emb, slice_id))
emb_queue.put((None, None))
def get_emb():
return emb_queue.get()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="build Faiss index",)
parser.add_argument(
'--input_file', type=str, required=False, help='Input file',
)
parser.add_argument(
'--train_index_size', type=int, required=False, help='The number of sentences that is used to train the index',
)
parser.add_argument(
'--train_chunk_size', type=int, default=10000, help='The sentences in chunks that is added to the index',
)
parser.add_argument(
'--sentence_transformer_model',
type=str,
default='bert-base-nli-mean-tokens',
help='sentence transformer to load',
)
parser.add_argument(
'--output_file', type=str, required=True, help='Output Faiss index file',
)
parser.add_argument(
'--percent', type=float, default=1.0, help='percent of documents used for building the search index',
)
parser.add_argument(
'--devices', type=str, default=None, help='delimited list input with cuda devices. Specify like 0,1,2'
)
parser.add_argument(
"--batch_size", type=int, default=4000, help="Batch size for encoding. Use max according to GPU MEM"
)
parser.add_argument("--subquantizers", type=int, default=8, help="Quantizer code size")
group = parser.add_argument_group(title='tokenizer')
group.add_argument(
'--tokenizer-library',
type=str,
required=False,
choices=['yttm', 'sentencepiece', 'megatron', 'huggingface', 'tabular'],
help='What tokenizer library to use.',
)
group.add_argument(
'--tokenizer-type', type=str, default=None, help='What type of tokenizer to use.',
)
group.add_argument(
'--tokenizer-model', type=str, default=None, help='Path to tokenizer model.',
)
group.add_argument('--no_pq', action='store_true', help="don't use the Product Quantizer")
group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file')
group.add_argument('--workers', type=int, default=None, help='number of workers to run tokenizer')
group.add_argument(
'--stage',
type=int,
default=None,
help='used for building the large index in multiple stages',
choices=[0, 1, 2],
)
group.add_argument('--faiss_factory', type=str, default=None, help="faiss index factory str")
group.add_argument('--faiss_factory_metric', type=str, default='IP', help="faiss index factory metric, l2 or IP")
group.add_argument('--shard_id', type=int, default=None, help='run the job to create the shard_id index')
group.add_argument('--total_shards', type=int, default=None, help='total number of faiss index shards')
group.add_argument(
'--learned_index', type=str, default=None, help='the learned faiss index file, which is prepared at stage 0'
)
group.add_argument(
'--shard_index_input', type=str, default=None, help='the shard faiss index files, which are created at stage 1'
)
group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).')
group.add_argument('--delimiter', type=str, default=None, help='delimiter used for tabular tokenizer')
args = parser.parse_args()
has_gpu = torch.cuda.is_available() and hasattr(faiss, "index_gpu_to_cpu")
if not hasattr(faiss, "index_gpu_to_cpu"):
logging.warning(
"faiss doesn't support gpu index. Please check https://github.com/facebookresearch/faiss/blob/main/INSTALL.md"
)
if args.stage == 2:
# combine shard index files into one
logging.info('loading trained index')
# construct the output index
index = faiss.read_index(args.learned_index)
input_file = pathlib.Path(args.shard_index_input)
path = input_file.parent
fname = input_file.name
all_files = [str(i) for i in pathlib.Path(path).glob(fname + '*')]
merge_ondisk(index, all_files, str(path / 'merged.index'))
faiss.write_index(index, args.output_file)
logging.info(f'Write to {args.output_file}, Size of Index : {index.ntotal}')
# consolidate it as one index
if args.devices is None or not torch.cuda.is_available():
device_list = None
else:
device_list = ['cuda:' + str(device) for device in args.devices.split(',')]
index = faiss.read_index(args.output_file)
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(index, co, ngpu=len(device_list))
index = faiss.index_gpu_to_cpu(index)
faiss.write_index(index, args.output_file)
sys.exit(0)
model = SentenceTransformer(args.sentence_transformer_model)
tokenizer = get_tokenizer(args)
ds = MMapRetrievalIndexedDataset(args.input_file, skip_warmup=True)
# make sure the dataset is padded as retrieval database
assert ds._index.retrieval_db
if args.stage is None or args.stage == 0:
if ds.chunks < args.train_index_size:
raise ValueError(
f"the train index size {args.train_index_size} is larger than the total number of chunks {ds.chunks} in the dataset"
)
# Where nlist is 4*sqrt(N) to 16*sqrt(N), with N the size of the dataset.
# This just clusters the vectors with k-means. You will need between 30*K and 256*K vectors for training (the more the better).
total_chunks = ds.chunks
if args.percent < 1.0:
num_docs = len(ds._index.sizes)
use_num_docs = int(num_docs * args.percent)
total_chunks = ds._index._chunk_id_start[min(use_num_docs, num_docs - 1)]
nlist = int(4 * np.sqrt(total_chunks))
assert 30 * nlist < args.train_index_size, f"need more training samples, at least {30 * nlist}"
process = multiprocessing.Process(
target=process_sentence_chunks,
args=(
ds,
tokenizer,
args.train_chunk_size,
args.train_index_size,
args.percent,
args.stage,
args.workers,
args.shard_id,
args.total_shards,
),
)
process.start()
if args.devices is None or not torch.cuda.is_available():
device_list = None
else:
device_list = ['cuda:' + str(device) for device in args.devices.split(',')]
pool = model.start_multi_process_pool(device_list)
emb_process = multiprocessing.Process(target=calculate_embedding, args=(pool, args.batch_size))
emb_process.start()
# get first batch of sentences to build up the index
# sentences = get_sentence_chunks()
if args.stage is None or args.stage == 0:
emb, slice_id = get_emb()
# initialize the Faiss index
# m is number of subquantizers. So vector of size D is broken into m sub-vectors of size D/m
m = args.subquantizers
k = 4 # num_nearest neighbors to get
quantizer = faiss.IndexFlatIP(emb.shape[1])
# 8 specifies that each sub-vector is encoded as 8 bits
if args.no_pq:
index = faiss.IndexIVFFlat(quantizer, emb.shape[1], nlist)
elif args.faiss_factory is not None:
if args.faiss_factory_metric == 'IP':
metric = faiss.METRIC_INNER_PRODUCT
else:
metric = faiss.METRIC_L2
index = faiss.index_factory(emb.shape[1], args.faiss_factory, metric)
else:
index = faiss.IndexIVFPQ(quantizer, emb.shape[1], nlist, m, 8)
if has_gpu:
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(index, co, ngpu=len(device_list))
elif args.stage == 1:
# stage 1, need to load the index from file
index = faiss.read_index(args.learned_index)
if has_gpu:
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(index, co, ngpu=len(device_list))
else:
raise ValueError(f'should not come here')
if args.stage is not None:
logging.info(f'build index at stage {args.stage}')
if args.stage is None or args.stage == 0:
# train the index
beg = time.time()
index.train(emb)
end = time.time()
logging.info(f'Trained Index takes {end-beg}')
# just need to have the learned index
if has_gpu:
index = faiss.index_gpu_to_cpu(index)
faiss.write_index(index, args.output_file)
model.stop_multi_process_pool(pool)
process.join()
emb_process.join()
sys.exit(0)
while True:
emb, slice_id = get_emb()
if emb is None:
break
beg = time.time()
index.add_with_ids(emb, np.arange(slice_id[0], slice_id[1]).astype(np.int64))
end = time.time()
logging.info(f'add index {slice_id[0]} - {slice_id[1]} takes {end-beg}')
model.stop_multi_process_pool(pool)
process.join()
emb_process.join()
logging.info('Writing Index file')
if has_gpu:
index = faiss.index_gpu_to_cpu(index)
faiss.write_index(index, args.output_file)
logging.info(f'Size of Index : {index.ntotal}')
|