File size: 4,185 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will merge prompt-specific train files into a single file per task.
"""
import json
import os
from argparse import ArgumentParser

tasks = [
    'adversarial_qa',
    'ag_news',
    'ai2_arc_ARC_Challenge',
    'ai2_arc_ARC_Easy',
    'amazon_polarity',
    'anli',
    'app_reviews',
    'cnn_dailymail_3.0.0',
    'common_gen',
    'cos_e_v1.11',
    'cosmos_qa',
    'dbpedia_14',
    'dream',
    'duorc_ParaphraseRC',
    'duorc_SelfRC',
    'gigaword',
    'glue_mrpc',
    'glue_qqp',
    'hellaswag',
    'imdb',
    'kilt_tasks_hotpotqa',
    'multi_news',
    'openbookqa_main',
    'paws_labeled_final',
    'piqa',
    'qasc',
    'quail',
    'quarel',
    'quartz',
    'quoref',
    'race_high',
    'race_middle',
    'ropes',
    'rotten_tomatoes',
    'samsum',
    'sciq',
    'social_i_qa',
    'squad_v2',
    'super_glue_boolq',
    'super_glue_cb',
    'super_glue_copa',
    'super_glue_multirc',
    'super_glue_record',
    'super_glue_rte',
    'super_glue_wic',
    'super_glue_wsc',
    'trec',
    'trivia_qa',
    'web_questions',
    'wiki_bio',
    'wiki_hop',
    'wiki_qa',
    'winogrande_winogrande',
    'wiqa',
    'xsum',
    'yelp_review_full',
]


def merge_train_folder(train_data_folder, merged_train_data_folder):
    if not os.path.exists(merged_train_data_folder):
        os.makedirs(merged_train_data_folder)
    task_counter = {task: 0 for task in tasks}
    fptrs = {task: open(os.path.join(merged_train_data_folder, task + '.jsonl'), 'w') for task in tasks}
    for idx, fname in enumerate(os.listdir(train_data_folder)):
        if idx % 10 == 0:
            print(f'Processed {idx + 1}/{len(os.listdir(train_data_folder))} files ...')
        if fname.endswith('.jsonl') and '_score_eval' not in fname:
            found = False
            for task in tasks:
                if fname.startswith(task):
                    task_counter[task] += 1
                    found = True
                    with open(os.path.join(train_data_folder, fname), 'r') as f:
                        for line in f:
                            line = json.loads(line)
                            line['task_name_with_prompt'] = fname
                            if line['input'].strip() == '':
                                print(f'WARNING: Empty input for {fname}')
                                continue
                            if line['output'].strip() == '':
                                print(f'WARNING: Empty output for {fname}')
                                continue
                            fptrs[task].write(json.dumps(line) + '\n')
            if not found:
                print(f'WARNING: Could not find task for {fname}')

    for _, v in fptrs.items():
        v.close()
        if task_counter[task] == 0:
            print('WARNING: No files found for task: ', task)

    for k, v in task_counter.items():
        print(f'Task {k} had {v} prompt templates.')


if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument(
        "--p3_processed_train_dataset_path",
        type=str,
        required=True,
        help="Path to the processed P3 train dataset. This is the output of the t0_dataset_preproc.py script.",
    )
    parser.add_argument(
        "--p3_processed_merged_train_dataset_path",
        type=str,
        required=True,
        help="Path to output folder where merged JSONL files will be written.",
    )
    args = parser.parse_args()
    merge_train_folder(args.p3_processed_train_dataset_path, args.p3_processed_merged_train_dataset_path)