File size: 7,512 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import re
from argparse import ArgumentParser
from multiprocessing import Pool

import tensorflow as tf
from sacremoses import MosesDetokenizer
from tasks_splits_and_features import _TASK_SPLITS_AND_FEATURES_DICT


"""
This script converts the P3 dataset used to train T0 from a tfrecords format to individual JSONL files.

Use instructions:

NOTE: This script requires tensorflow to be installed.

1. Download the P3 dataset by cloning it from Huggingface:
        git clone https://huggingface.co/datasets/bigscience/P3. The raw data should be at P3/data.
2. Run this script: 
    python t0_dataset_preproc.py \
        --p3_dataset_path P3/data \
        --jsonl_output_path P3/data_processed_jsonl
3. The output will be in the jsonl_output_path directory. In the following structure:
    - P3/data_processed_jsonl/train
       - super_glue_cb_does_this_imply.jsonl
       - super_glue_cb_justified_in_saying_score_eval.jsonl
       - .....
    - P3/data_processed_jsonl/val
       - super_glue_cb_does_this_imply.jsonl
       - super_glue_cb_justified_in_saying_score_eval.jsonl
       - .....
4. Each JSONL file is compatible with NeMo's T0JSONLMemMapDataset (https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/data/language_modeling/t0_dataset.py)
"""


def _feature_config(shape, dtype):
    if dtype in ("int32", "bool"):
        # int32 and bool are stored as int64 in the tf.train.Example protobuf.
        dtype = "int64"
    if shape and shape[0] is None:
        return tf.io.FixedLenSequenceFeature(shape[1:], dtype, allow_missing=True)
    return tf.io.FixedLenFeature(shape, dtype)


def remove_newline_and_detokenize(x, detokenizer, remove_newlines):
    if remove_newlines:
        x = re.sub(r'\\n+', ' ', x)
        x = re.sub(r'\n+', ' ', x)
        x = re.sub(r'\\r+', ' ', x)
        x = re.sub(r'\r+', ' ', x)
    x = x.strip()
    # NOTE: Moving the detokenizer inside this condition since sacremoses detokenize seems to remove \n as well.
    if remove_newlines:
        x = detokenizer.detokenize([x])
    return x


def write_dataset_to_file(dataset, filename, detokenizer, remove_newlines):
    with open(filename, 'w') as f:
        for item in dataset:
            # NOTE: Although we do `.tolist()` here this is not actually a list. This is just to convert from a numpy to python object so we can check if it is True/False.
            if 'is_correct' in item and item['is_correct'].numpy().tolist() is False:
                print('Skipping example because is_correct is False')
                continue

            item_object = {}
            i = remove_newline_and_detokenize(
                item['inputs_pretokenized'].numpy().decode('utf-8'), detokenizer, remove_newlines
            )
            item_object['input'] = i
            t = remove_newline_and_detokenize(
                item['targets_pretokenized'].numpy().decode('utf-8'), detokenizer, remove_newlines
            )
            item_object['output'] = t
            if 'answer_choices' in item:
                choices = [
                    remove_newline_and_detokenize(x.decode('utf-8'), detokenizer, remove_newlines)
                    for x in item['answer_choices'].numpy().tolist()
                ]
                item_object['choices'] = choices
            f.write(json.dumps(item_object) + '\n')


def write_train_val_test_dataset_to_file(file_name, folder_name, output_folder, detokenizer, split, remove_newlines):
    ds = tf.data.TFRecordDataset(tf.io.gfile.glob([file_name]))
    fdict = _TASK_SPLITS_AND_FEATURES_DICT[folder_name]['features_dict']
    feature_description = {feat: _feature_config(**desc) for feat, desc in fdict.items()}
    ds = ds.map(
        lambda pb: tf.io.parse_single_example(pb, feature_description),
        num_parallel_calls=tf.data.experimental.AUTOTUNE,
    )
    ds = ds.map(
        lambda x: {k: tf.cast(v, fdict[k]["dtype"]) for k, v in x.items()},
        num_parallel_calls=tf.data.experimental.AUTOTUNE,
    )
    write_dataset_to_file(ds, os.path.join(output_folder, split, folder_name + '.jsonl'), detokenizer, remove_newlines)


def process_folder(data_folder, folder_name, output_folder, detokenizer, remove_newlines):
    if not os.path.isdir(os.path.join(data_folder, folder_name)):
        return
    print(f'Processing {folder_name}')
    train_fname = os.path.join(data_folder, folder_name, 'train.tfrecord-00000-of-00001')
    valid_fname = os.path.join(data_folder, folder_name, 'validation.tfrecord-00000-of-00001')
    test_fname = os.path.join(data_folder, folder_name, 'test.tfrecord-00000-of-00001')
    if not os.path.exists(train_fname):
        print(f'Could not find {train_fname}')
        return
    write_train_val_test_dataset_to_file(
        train_fname, folder_name, output_folder, detokenizer, 'train', remove_newlines
    )
    if os.path.exists(valid_fname):
        write_train_val_test_dataset_to_file(
            valid_fname, folder_name, output_folder, detokenizer, 'val', remove_newlines
        )
    if os.path.exists(test_fname):
        write_train_val_test_dataset_to_file(
            test_fname, folder_name, output_folder, detokenizer, 'test', remove_newlines
        )


def process_all_folders(data_folder, output_folder, remove_newlines):
    detokenizer = MosesDetokenizer('en')
    assert os.path.isdir(data_folder)
    if not os.path.exists(output_folder):
        os.system(f'mkdir -p {output_folder}')
    if not os.path.exists(os.path.join(output_folder, 'train')):
        os.system(f'mkdir -p {os.path.join(output_folder, "train")}')
    if not os.path.exists(os.path.join(output_folder, 'val')):
        os.system(f'mkdir -p {os.path.join(output_folder, "val")}')
    if not os.path.exists(os.path.join(output_folder, 'test')):
        os.system(f'mkdir -p {os.path.join(output_folder, "test")}')

    print(f'Found {len(os.listdir(data_folder))} folders to process ...')
    pool_args = []
    for folder_name in os.listdir(data_folder):
        pool_args.append((data_folder, folder_name, output_folder, detokenizer, remove_newlines))
    pool = Pool()
    pool.starmap(process_folder, pool_args)


if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument(
        "--p3_dataset_path",
        type=str,
        required=True,
        help="Path to raw P3 data. Should be a folder containing folders for each task. After cloning the repo this should correspond to P3/data",
    )
    parser.add_argument(
        "--jsonl_output_path",
        type=str,
        required=True,
        help="Path to output folder where JSONL files will be written.",
    )
    parser.add_argument(
        "--remove_newlines", action="store_true", help="Whether to remove newlines from the input and output.",
    )
    args = parser.parse_args()
    process_all_folders(args.p3_dataset_path, args.jsonl_output_path, args.remove_newlines)