File size: 8,647 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script converts a filelist file where each line contains
<absolute path of wav file> to a manifest json file.
Optionally post processes the manifest file to create dev and train split for speaker embedding
training, also optionally segment an audio file in to segments of random DURATIONS and create those
wav files in CWD.
Args:
--filelist: path to file containing list of audio files
--manifest(optional): if you already have manifest file, but would like to process it for creating
segments and splitting then use manifest ignoring filelist
--id: index of speaker label in filename present in filelist file that is separated by '/'
--out: output manifest file name
--split: if you would want to split the manifest file for training purposes
you may not need this for test set. output file names is <out>_<train/dev>.json, defaults to False
--create_segments: if you would want to segment each manifest line to segments of [1,2,3,4] sec or less
you may not need this for test set, defaults to False
--min_spkrs_count: min number of samples per speaker to consider and ignore otherwise, defaults to 0 (all speakers)
"""
import argparse
import json
import os
import random
import librosa as l
import numpy as np
import soundfile as sf
import sox
from sklearn.model_selection import StratifiedShuffleSplit
from tqdm.contrib.concurrent import process_map
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest
random.seed(42)
DURATIONS = sorted([3], reverse=True)
MIN_ENERGY = 0.01
CWD = os.getcwd()
def filter_manifest_line(manifest_line):
split_manifest = []
audio_path = manifest_line['audio_filepath']
start = manifest_line.get('offset', 0)
dur = manifest_line['duration']
label = manifest_line['label']
endname = os.path.splitext(audio_path.split(label, 1)[-1])[0]
to_path = os.path.join(CWD, 'segments', label)
to_path = os.path.join(to_path, endname[1:])
os.makedirs(os.path.dirname(to_path), exist_ok=True)
if dur >= min(DURATIONS):
signal, sr = sf.read(audio_path)
remaining_dur = dur - start
segments = DURATIONS.copy()
mode = int(remaining_dur // sum(DURATIONS))
rem = remaining_dur % sum(DURATIONS)
segments = mode * segments
for val in DURATIONS:
if rem >= val:
segments.append(val)
rem = rem - val
for temp_dur in segments:
segment_audio = signal[int(start * sr) : int(start * sr + temp_dur * sr)]
if l.feature.rms(y=segment_audio).mean() > MIN_ENERGY:
final_string = '_' + str(start) + '_' + str(temp_dur)
final_string = final_string.replace('.', '-')
to_file = to_path + final_string + '.wav'
c_start = int(float(start * sr))
c_end = c_start + int(float(temp_dur * sr))
segment = signal[c_start:c_end]
sf.write(to_file, segment, sr)
meta = manifest_line.copy()
meta['audio_filepath'] = to_file
meta['offset'] = 0
meta['duration'] = temp_dur
split_manifest.append(meta)
start = start + temp_dur
return split_manifest
def count_and_consider_only(speakers, lines, min_count=10):
"""
consider speakers only if samples per speaker is at least min_count
"""
uniq_speakers, indices, counts = np.unique(speakers, return_index=True, return_counts=True)
print("speaker count before filtering minimum number of speaker counts: ", len(uniq_speakers))
required_speakers = {}
for idx, count in enumerate(counts):
if count >= min_count:
required_speakers[uniq_speakers[idx]] = count
print("speaker count after filtering minimum number of speaker counts: ", len(required_speakers))
required_lines = []
speakers_only = []
for idx, speaker in enumerate(speakers):
if speaker in required_speakers:
required_lines.append(lines[idx])
speakers_only.append(speaker)
return speakers_only, required_lines
def write_file(name, lines, idx):
with open(name, 'w', encoding='utf-8') as fout:
for i in idx:
dic = lines[i]
json.dump(dic, fout)
fout.write('\n')
print("wrote", name)
def read_file(filelist, id=-1):
json_lines = []
with open(filelist, 'r') as fo:
lines = fo.readlines()
lines = sorted(lines)
for line in lines:
line = line.strip()
speaker = line.split('/')[id]
speaker = list(speaker)
speaker = ''.join(speaker)
meta = {"audio_filepath": line, "offset": 0, "duration": None, "label": speaker}
json_lines.append(meta)
return json_lines
def get_duration(json_line):
dur = json_line['duration']
if dur is None:
wav_path = json_line['audio_filepath']
json_line['duration'] = sox.file_info.duration(wav_path)
return json_line
def get_labels(lines):
labels = []
for line in lines:
label = line['label']
labels.append(label)
return labels
def main(filelist, manifest, id, out, split=False, create_segments=False, min_count=10):
if os.path.exists(out):
os.remove(out)
if filelist:
lines = read_file(filelist=filelist, id=id)
lines = process_map(get_duration, lines, chunksize=100)
out_file = os.path.splitext(filelist)[0] + '_manifest.json'
write_file(out_file, lines, range(len(lines)))
else:
lines = read_manifest(manifest)
lines = process_map(get_duration, lines, chunksize=100)
if create_segments:
print(f"creating and writing segments to {CWD}")
lines = process_map(filter_manifest_line, lines, chunksize=100)
temp = []
for line in lines:
temp.extend(line)
del lines
lines = temp
speakers = [x['label'] for x in lines]
if min_count:
speakers, lines = count_and_consider_only(speakers, lines, abs(min_count))
write_file(out, lines, range(len(lines)))
path = os.path.dirname(out)
if split:
speakers = [x['label'] for x in lines]
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.1, random_state=42)
for train_idx, test_idx in sss.split(speakers, speakers):
print("number of train samples after split: ", len(train_idx))
out = os.path.join(path, 'train.json')
write_file(out, lines, train_idx)
out = os.path.join(path, 'dev.json')
write_file(out, lines, test_idx)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--filelist", help="path to filelist file", type=str, required=False, default=None)
parser.add_argument("--manifest", help="manifest file name", type=str, required=False, default=None)
parser.add_argument(
"--id",
help="field num seperated by '/' to be considered as speaker label from filelist file, can be ignored if manifest file is already provided with labels",
type=int,
required=False,
default=None,
)
parser.add_argument("--out", help="manifest_file name", type=str, required=True)
parser.add_argument(
"--split",
help="bool if you would want to split the manifest file for training purposes",
required=False,
action='store_true',
)
parser.add_argument(
"--create_segments",
help="bool if you would want to segment each manifest line to segments of 4 sec or less",
required=False,
action='store_true',
)
parser.add_argument(
"--min_spkrs_count",
default=0,
type=int,
help="min number of samples per speaker to consider and ignore otherwise",
)
args = parser.parse_args()
main(
args.filelist, args.manifest, args.id, args.out, args.split, args.create_segments, args.min_spkrs_count,
)
|