File size: 29,815 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# This script converts an existing audio dataset with a manifest to
# a tarred and sharded audio dataset that can be read by the
# TarredAudioToTextDataLayer.
# Please make sure your audio_filepath DOES NOT CONTAIN '-sub'!
# Because we will use it to handle files which have duplicate filenames but with different offsets
# (see function create_shard for details)
# Bucketing can help to improve the training speed. You may use --buckets_num to specify the number of buckets.
# It creates multiple tarred datasets, one per bucket, based on the audio durations.
# The range of [min_duration, max_duration) is split into equal sized buckets.
# Recommend to use --sort_in_shards to speedup the training by reducing the paddings in the batches
# More info on how to use bucketing feature: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/datasets.html
# If valid NVIDIA DALI version is installed, will also generate the corresponding DALI index files that need to be
# supplied to the config in order to utilize webdataset for efficient large dataset handling.
# NOTE: DALI + Webdataset is NOT compatible with Bucketing support !
# Usage:
1) Creating a new tarfile dataset
python convert_to_tarred_audio_dataset.py \
--manifest_path=<path to the manifest file> \
--target_dir=<path to output directory> \
--num_shards=<number of tarfiles that will contain the audio> \
--max_duration=<float representing maximum duration of audio samples> \
--min_duration=<float representing minimum duration of audio samples> \
--shuffle --shuffle_seed=1 \
--sort_in_shards \
--workers=-1
2) Concatenating more tarfiles to a pre-existing tarred dataset
python convert_to_tarred_audio_dataset.py \
--manifest_path=<path to the tarred manifest file> \
--metadata_path=<path to the metadata.yaml (or metadata_version_{X}.yaml) file> \
--target_dir=<path to output directory where the original tarfiles are contained> \
--max_duration=<float representing maximum duration of audio samples> \
--min_duration=<float representing minimum duration of audio samples> \
--shuffle --shuffle_seed=1 \
--sort_in_shards \
--workers=-1 \
--concat_manifest_paths \
<space separated paths to 1 or more manifest files to concatenate into the original tarred dataset>
3) Writing an empty metadata file
python convert_to_tarred_audio_dataset.py \
--target_dir=<path to output directory> \
# any other optional argument
--num_shards=8 \
--max_duration=16.7 \
--min_duration=0.01 \
--shuffle \
--workers=-1 \
--sort_in_shards \
--shuffle_seed=1 \
--write_metadata
"""
import argparse
import copy
import json
import os
import random
import tarfile
from collections import defaultdict
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, List, Optional
from joblib import Parallel, delayed
from omegaconf import DictConfig, OmegaConf, open_dict
try:
import create_dali_tarred_dataset_index as dali_index
DALI_INDEX_SCRIPT_AVAILABLE = True
except (ImportError, ModuleNotFoundError, FileNotFoundError):
DALI_INDEX_SCRIPT_AVAILABLE = False
parser = argparse.ArgumentParser(
description="Convert an existing ASR dataset to tarballs compatible with TarredAudioToTextDataLayer."
)
parser.add_argument(
"--manifest_path", default=None, type=str, required=False, help="Path to the existing dataset's manifest."
)
parser.add_argument(
'--concat_manifest_paths',
nargs='+',
default=None,
type=str,
required=False,
help="Path to the additional dataset's manifests that will be concatenated with base dataset.",
)
# Optional arguments
parser.add_argument(
"--target_dir",
default='./tarred',
type=str,
help="Target directory for resulting tarballs and manifest. Defaults to `./tarred`. Creates the path if necessary.",
)
parser.add_argument(
"--metadata_path", required=False, default=None, type=str, help="Path to metadata file for the dataset.",
)
parser.add_argument(
"--num_shards",
default=-1,
type=int,
help="Number of shards (tarballs) to create. Used for partitioning data among workers.",
)
parser.add_argument(
'--max_duration',
default=None,
required=True,
type=float,
help='Maximum duration of audio clip in the dataset. By default, it is None and is required to be set.',
)
parser.add_argument(
'--min_duration',
default=None,
type=float,
help='Minimum duration of audio clip in the dataset. By default, it is None and will not filter files.',
)
parser.add_argument(
"--shuffle",
action='store_true',
help="Whether or not to randomly shuffle the samples in the manifest before tarring/sharding.",
)
parser.add_argument(
"--keep_files_together",
action='store_true',
help="Whether or not to keep entries from the same file (but different offsets) together when sorting before tarring/sharding.",
)
parser.add_argument(
"--sort_in_shards",
action='store_true',
help="Whether or not to sort samples inside the shards based on their duration.",
)
parser.add_argument(
"--buckets_num", type=int, default=1, help="Number of buckets to create based on duration.",
)
parser.add_argument("--shuffle_seed", type=int, default=None, help="Random seed for use if shuffling is enabled.")
parser.add_argument(
'--write_metadata',
action='store_true',
help=(
"Flag to write a blank metadata with the current call config. "
"Note that the metadata will not contain the number of shards, "
"and it must be filled out by the user."
),
)
parser.add_argument(
"--no_shard_manifests",
action='store_true',
help="Do not write sharded manifests along with the aggregated manifest.",
)
parser.add_argument('--workers', type=int, default=1, help='Number of worker processes')
args = parser.parse_args()
@dataclass
class ASRTarredDatasetConfig:
num_shards: int = -1
shuffle: bool = False
max_duration: Optional[float] = None
min_duration: Optional[float] = None
shuffle_seed: Optional[int] = None
sort_in_shards: bool = True
shard_manifests: bool = True
keep_files_together: bool = False
@dataclass
class ASRTarredDatasetMetadata:
created_datetime: Optional[str] = None
version: int = 0
num_samples_per_shard: Optional[int] = None
is_concatenated_manifest: bool = False
dataset_config: Optional[ASRTarredDatasetConfig] = field(default_factory=lambda: ASRTarredDatasetConfig())
history: Optional[List[Any]] = field(default_factory=lambda: [])
def __post_init__(self):
self.created_datetime = self.get_current_datetime()
def get_current_datetime(self):
return datetime.now().strftime("%m-%d-%Y %H-%M-%S")
@classmethod
def from_config(cls, config: DictConfig):
obj = cls()
obj.__dict__.update(**config)
return obj
@classmethod
def from_file(cls, filepath: str):
config = OmegaConf.load(filepath)
return ASRTarredDatasetMetadata.from_config(config=config)
class ASRTarredDatasetBuilder:
"""
Helper class that constructs a tarred dataset from scratch, or concatenates tarred datasets
together and constructs manifests for them.
"""
def __init__(self):
self.config = None
def configure(self, config: ASRTarredDatasetConfig):
"""
Sets the config generated from command line overrides.
Args:
config: ASRTarredDatasetConfig dataclass object.
"""
self.config = config # type: ASRTarredDatasetConfig
if self.config.num_shards < 0:
raise ValueError("`num_shards` must be > 0. Please fill in the metadata information correctly.")
def create_new_dataset(self, manifest_path: str, target_dir: str = "./tarred/", num_workers: int = 0):
"""
Creates a new tarred dataset from a given manifest file.
Args:
manifest_path: Path to the original ASR manifest.
target_dir: Output directory.
num_workers: Integer denoting number of parallel worker processes which will write tarfiles.
Defaults to 1 - which denotes sequential worker process.
Output:
Writes tarfiles, along with the tarred dataset compatible manifest file.
Also preserves a record of the metadata used to construct this tarred dataset.
"""
if self.config is None:
raise ValueError("Config has not been set. Please call `configure(config: ASRTarredDatasetConfig)`")
if manifest_path is None:
raise FileNotFoundError("Manifest filepath cannot be None !")
config = self.config # type: ASRTarredDatasetConfig
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# Read the existing manifest
entries, total_duration, filtered_entries, filtered_duration = self._read_manifest(manifest_path, config)
if len(filtered_entries) > 0:
print(f"Filtered {len(filtered_entries)} files which amounts to {filtered_duration} seconds of audio.")
print(
f"After filtering, manifest has {len(entries)} files which amounts to {total_duration} seconds of audio."
)
if len(entries) == 0:
print("No tarred dataset was created as there were 0 valid samples after filtering!")
return
if config.shuffle:
random.seed(config.shuffle_seed)
print("Shuffling...")
if config.keep_files_together:
filename_entries = defaultdict(list)
for ent in entries:
filename_entries[ent["audio_filepath"]].append(ent)
filenames = list(filename_entries.keys())
random.shuffle(filenames)
shuffled_entries = []
for filename in filenames:
shuffled_entries += filename_entries[filename]
entries = shuffled_entries
else:
random.shuffle(entries)
# Create shards and updated manifest entries
print(f"Number of samples added : {len(entries)}")
print(f"Remainder: {len(entries) % config.num_shards}")
start_indices = []
end_indices = []
# Build indices
for i in range(config.num_shards):
start_idx = (len(entries) // config.num_shards) * i
end_idx = start_idx + (len(entries) // config.num_shards)
print(f"Shard {i} has entries {start_idx} ~ {end_idx}")
files = set()
for ent_id in range(start_idx, end_idx):
files.add(entries[ent_id]["audio_filepath"])
print(f"Shard {i} contains {len(files)} files")
if i == config.num_shards - 1:
# We discard in order to have the same number of entries per shard.
print(f"Have {len(entries) - end_idx} entries left over that will be discarded.")
start_indices.append(start_idx)
end_indices.append(end_idx)
manifest_folder, _ = os.path.split(manifest_path)
with Parallel(n_jobs=num_workers, verbose=config.num_shards) as parallel:
# Call parallel tarfile construction
new_entries_list = parallel(
delayed(self._create_shard)(entries[start_idx:end_idx], target_dir, i, manifest_folder)
for i, (start_idx, end_idx) in enumerate(zip(start_indices, end_indices))
)
if config.shard_manifests:
sharded_manifests_dir = target_dir + '/sharded_manifests'
if not os.path.exists(sharded_manifests_dir):
os.makedirs(sharded_manifests_dir)
for manifest in new_entries_list:
shard_id = manifest[0]['shard_id']
new_manifest_shard_path = os.path.join(sharded_manifests_dir, f'manifest_{shard_id}.json')
with open(new_manifest_shard_path, 'w', encoding='utf-8') as m2:
for entry in manifest:
json.dump(entry, m2)
m2.write('\n')
# Flatten the list of list of entries to a list of entries
new_entries = [sample for manifest in new_entries_list for sample in manifest]
del new_entries_list
print("Total number of entries in manifest :", len(new_entries))
# Write manifest
new_manifest_path = os.path.join(target_dir, 'tarred_audio_manifest.json')
with open(new_manifest_path, 'w', encoding='utf-8') as m2:
for entry in new_entries:
json.dump(entry, m2)
m2.write('\n')
# Write metadata (default metadata for new datasets)
new_metadata_path = os.path.join(target_dir, 'metadata.yaml')
metadata = ASRTarredDatasetMetadata()
# Update metadata
metadata.dataset_config = config
metadata.num_samples_per_shard = len(new_entries) // config.num_shards
# Write metadata
metadata_yaml = OmegaConf.structured(metadata)
OmegaConf.save(metadata_yaml, new_metadata_path, resolve=True)
def create_concatenated_dataset(
self,
base_manifest_path: str,
manifest_paths: List[str],
metadata: ASRTarredDatasetMetadata,
target_dir: str = "./tarred_concatenated/",
num_workers: int = 1,
):
"""
Creates new tarfiles in order to create a concatenated dataset, whose manifest contains the data for
both the original dataset as well as the new data submitted in manifest paths.
Args:
base_manifest_path: Path to the manifest file which contains the information for the original
tarred dataset (with flattened paths).
manifest_paths: List of one or more paths to manifest files that will be concatenated with above
base tarred dataset.
metadata: ASRTarredDatasetMetadata dataclass instance with overrides from command line.
target_dir: Output directory
Output:
Writes tarfiles which with indices mapping to a "concatenated" tarred dataset,
along with the tarred dataset compatible manifest file which includes information
about all the datasets that comprise the concatenated dataset.
Also preserves a record of the metadata used to construct this tarred dataset.
"""
if not os.path.exists(target_dir):
os.makedirs(target_dir)
if base_manifest_path is None:
raise FileNotFoundError("Base manifest filepath cannot be None !")
if manifest_paths is None or len(manifest_paths) == 0:
raise FileNotFoundError("List of additional manifest filepaths cannot be None !")
config = ASRTarredDatasetConfig(**(metadata.dataset_config))
# Read the existing manifest (no filtering here)
base_entries, _, _, _ = self._read_manifest(base_manifest_path, config)
print(f"Read base manifest containing {len(base_entries)} samples.")
# Precompute number of samples per shard
if metadata.num_samples_per_shard is None:
num_samples_per_shard = len(base_entries) // config.num_shards
else:
num_samples_per_shard = metadata.num_samples_per_shard
print("Number of samples per shard :", num_samples_per_shard)
# Compute min and max duration and update config (if no metadata passed)
print(f"Selected max duration : {config.max_duration}")
print(f"Selected min duration : {config.min_duration}")
entries = []
for new_manifest_idx in range(len(manifest_paths)):
new_entries, total_duration, filtered_new_entries, filtered_duration = self._read_manifest(
manifest_paths[new_manifest_idx], config
)
if len(filtered_new_entries) > 0:
print(
f"Filtered {len(filtered_new_entries)} files which amounts to {filtered_duration:0.2f}"
f" seconds of audio from manifest {manifest_paths[new_manifest_idx]}."
)
print(
f"After filtering, manifest has {len(entries)} files which amounts to {total_duration} seconds of audio."
)
entries.extend(new_entries)
if len(entries) == 0:
print("No tarred dataset was created as there were 0 valid samples after filtering!")
return
if config.shuffle:
random.seed(config.shuffle_seed)
print("Shuffling...")
random.shuffle(entries)
# Drop last section of samples that cannot be added onto a chunk
drop_count = len(entries) % num_samples_per_shard
total_new_entries = len(entries)
entries = entries[:-drop_count]
print(
f"Dropping {drop_count} samples from total new samples {total_new_entries} since they cannot "
f"be added into a uniformly sized chunk."
)
# Create shards and updated manifest entries
num_added_shards = len(entries) // num_samples_per_shard
print(f"Number of samples in base dataset : {len(base_entries)}")
print(f"Number of samples in additional datasets : {len(entries)}")
print(f"Number of added shards : {num_added_shards}")
print(f"Remainder: {len(entries) % num_samples_per_shard}")
start_indices = []
end_indices = []
shard_indices = []
for i in range(num_added_shards):
start_idx = (len(entries) // num_added_shards) * i
end_idx = start_idx + (len(entries) // num_added_shards)
shard_idx = i + config.num_shards
print(f"Shard {shard_idx} has entries {start_idx + len(base_entries)} ~ {end_idx + len(base_entries)}")
start_indices.append(start_idx)
end_indices.append(end_idx)
shard_indices.append(shard_idx)
manifest_folder, _ = os.path.split(base_manifest_path)
with Parallel(n_jobs=num_workers, verbose=num_added_shards) as parallel:
# Call parallel tarfile construction
new_entries_list = parallel(
delayed(self._create_shard)(entries[start_idx:end_idx], target_dir, shard_idx, manifest_folder)
for i, (start_idx, end_idx, shard_idx) in enumerate(zip(start_indices, end_indices, shard_indices))
)
if config.shard_manifests:
sharded_manifests_dir = target_dir + '/sharded_manifests'
if not os.path.exists(sharded_manifests_dir):
os.makedirs(sharded_manifests_dir)
for manifest in new_entries_list:
shard_id = manifest[0]['shard_id']
new_manifest_shard_path = os.path.join(sharded_manifests_dir, f'manifest_{shard_id}.json')
with open(new_manifest_shard_path, 'w', encoding='utf-8') as m2:
for entry in manifest:
json.dump(entry, m2)
m2.write('\n')
# Flatten the list of list of entries to a list of entries
new_entries = [sample for manifest in new_entries_list for sample in manifest]
del new_entries_list
# Write manifest
if metadata is None:
new_version = 1 # start with `1`, where `0` indicates the base manifest + dataset
else:
new_version = metadata.version + 1
print("Total number of entries in manifest :", len(base_entries) + len(new_entries))
new_manifest_path = os.path.join(target_dir, f'tarred_audio_manifest_version_{new_version}.json')
with open(new_manifest_path, 'w', encoding='utf-8') as m2:
# First write all the entries of base manifest
for entry in base_entries:
json.dump(entry, m2)
m2.write('\n')
# Finally write the new entries
for entry in new_entries:
json.dump(entry, m2)
m2.write('\n')
# Preserve historical metadata
base_metadata = metadata
# Write metadata (updated metadata for concatenated datasets)
new_metadata_path = os.path.join(target_dir, f'metadata_version_{new_version}.yaml')
metadata = ASRTarredDatasetMetadata()
# Update config
config.num_shards = config.num_shards + num_added_shards
# Update metadata
metadata.version = new_version
metadata.dataset_config = config
metadata.num_samples_per_shard = num_samples_per_shard
metadata.is_concatenated_manifest = True
metadata.created_datetime = metadata.get_current_datetime()
# Attach history
current_metadata = OmegaConf.structured(base_metadata.history)
metadata.history = current_metadata
# Write metadata
metadata_yaml = OmegaConf.structured(metadata)
OmegaConf.save(metadata_yaml, new_metadata_path, resolve=True)
def _read_manifest(self, manifest_path: str, config: ASRTarredDatasetConfig):
"""Read and filters data from the manifest"""
# Read the existing manifest
entries = []
total_duration = 0.0
filtered_entries = []
filtered_duration = 0.0
with open(manifest_path, 'r', encoding='utf-8') as m:
for line in m:
entry = json.loads(line)
if (config.max_duration is None or entry['duration'] < config.max_duration) and (
config.min_duration is None or entry['duration'] >= config.min_duration
):
entries.append(entry)
total_duration += entry["duration"]
else:
filtered_entries.append(entry)
filtered_duration += entry['duration']
return entries, total_duration, filtered_entries, filtered_duration
def _create_shard(self, entries, target_dir, shard_id, manifest_folder):
"""Creates a tarball containing the audio files from `entries`.
"""
if self.config.sort_in_shards:
entries.sort(key=lambda x: x["duration"], reverse=False)
new_entries = []
tar = tarfile.open(os.path.join(target_dir, f'audio_{shard_id}.tar'), mode='w', dereference=True)
count = dict()
for entry in entries:
# We squash the filename since we do not preserve directory structure of audio files in the tarball.
if os.path.exists(entry["audio_filepath"]):
audio_filepath = entry["audio_filepath"]
else:
audio_filepath = os.path.join(manifest_folder, entry["audio_filepath"])
if not os.path.exists(audio_filepath):
raise FileNotFoundError(f"Could not find {entry['audio_filepath']}!")
base, ext = os.path.splitext(audio_filepath)
base = base.replace('/', '_')
# Need the following replacement as long as WebDataset splits on first period
base = base.replace('.', '_')
squashed_filename = f'{base}{ext}'
if squashed_filename not in count:
tar.add(audio_filepath, arcname=squashed_filename)
to_write = squashed_filename
count[squashed_filename] = 1
else:
to_write = base + "-sub" + str(count[squashed_filename]) + ext
count[squashed_filename] += 1
new_entry = {
'audio_filepath': to_write,
'duration': entry['duration'],
'shard_id': shard_id, # Keep shard ID for recordkeeping
}
if 'label' in entry:
new_entry['label'] = entry['label']
if 'text' in entry:
new_entry['text'] = entry['text']
if 'offset' in entry:
new_entry['offset'] = entry['offset']
if 'lang' in entry:
new_entry['lang'] = entry['lang']
new_entries.append(new_entry)
tar.close()
return new_entries
@classmethod
def setup_history(cls, base_metadata: ASRTarredDatasetMetadata, history: List[Any]):
if 'history' in base_metadata.keys():
for history_val in base_metadata.history:
cls.setup_history(history_val, history)
if base_metadata is not None:
metadata_copy = copy.deepcopy(base_metadata)
with open_dict(metadata_copy):
metadata_copy.pop('history', None)
history.append(metadata_copy)
def main():
if args.buckets_num > 1:
bucket_length = (args.max_duration - args.min_duration) / float(args.buckets_num)
for i in range(args.buckets_num):
min_duration = args.min_duration + i * bucket_length
max_duration = min_duration + bucket_length
if i == args.buckets_num - 1:
# add a small number to cover the samples with exactly duration of max_duration in the last bucket.
max_duration += 1e-5
target_dir = os.path.join(args.target_dir, f"bucket{i+1}")
print(f"Creating bucket {i+1} with min_duration={min_duration} and max_duration={max_duration} ...")
print(f"Results are being saved at: {target_dir}.")
create_tar_datasets(min_duration=min_duration, max_duration=max_duration, target_dir=target_dir)
print(f"Bucket {i+1} is created.")
else:
create_tar_datasets(min_duration=args.min_duration, max_duration=args.max_duration, target_dir=args.target_dir)
def create_tar_datasets(min_duration: float, max_duration: float, target_dir: str):
builder = ASRTarredDatasetBuilder()
shard_manifests = False if args.no_shard_manifests else True
if args.write_metadata:
metadata = ASRTarredDatasetMetadata()
dataset_cfg = ASRTarredDatasetConfig(
num_shards=args.num_shards,
shuffle=args.shuffle,
max_duration=max_duration,
min_duration=min_duration,
shuffle_seed=args.shuffle_seed,
sort_in_shards=args.sort_in_shards,
shard_manifests=shard_manifests,
keep_files_together=args.keep_files_together,
)
metadata.dataset_config = dataset_cfg
output_path = os.path.join(target_dir, 'default_metadata.yaml')
OmegaConf.save(metadata, output_path, resolve=True)
print(f"Default metadata written to {output_path}")
exit(0)
if args.concat_manifest_paths is None or len(args.concat_manifest_paths) == 0:
print("Creating new tarred dataset ...")
# Create a tarred dataset from scratch
config = ASRTarredDatasetConfig(
num_shards=args.num_shards,
shuffle=args.shuffle,
max_duration=max_duration,
min_duration=min_duration,
shuffle_seed=args.shuffle_seed,
sort_in_shards=args.sort_in_shards,
shard_manifests=shard_manifests,
keep_files_together=args.keep_files_together,
)
builder.configure(config)
builder.create_new_dataset(manifest_path=args.manifest_path, target_dir=target_dir, num_workers=args.workers)
else:
if args.buckets_num > 1:
raise ValueError("Concatenation feature does not support buckets_num > 1.")
print("Concatenating multiple tarred datasets ...")
# Implicitly update config from base details
if args.metadata_path is not None:
metadata = ASRTarredDatasetMetadata.from_file(args.metadata_path)
else:
raise ValueError("`metadata` yaml file path must be provided!")
# Preserve history
history = []
builder.setup_history(OmegaConf.structured(metadata), history)
metadata.history = history
# Add command line overrides (everything other than num_shards)
metadata.dataset_config.max_duration = max_duration
metadata.dataset_config.min_duration = min_duration
metadata.dataset_config.shuffle = args.shuffle
metadata.dataset_config.shuffle_seed = args.shuffle_seed
metadata.dataset_config.sort_in_shards = args.sort_in_shards
metadata.dataset_config.shard_manifests = shard_manifests
builder.configure(metadata.dataset_config)
# Concatenate a tarred dataset onto a previous one
builder.create_concatenated_dataset(
base_manifest_path=args.manifest_path,
manifest_paths=args.concat_manifest_paths,
metadata=metadata,
target_dir=target_dir,
num_workers=args.workers,
)
if DALI_INDEX_SCRIPT_AVAILABLE and dali_index.INDEX_CREATOR_AVAILABLE:
print("Constructing DALI Tarfile Index - ", target_dir)
index_config = dali_index.DALITarredIndexConfig(tar_dir=target_dir, workers=args.workers)
dali_index.main(index_config)
if __name__ == "__main__":
main()
|