File size: 13,019 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Example Run Command: python ssl_tts_vc.py --ssl_model_ckpt_path <PATH TO CKPT> --hifi_ckpt_path <PATH TO CKPT> \
# --fastpitch_ckpt_path <PATH TO CKPT> --source_audio_path <SOURCE CONTENT WAV PATH> --target_audio_path \
# <TARGET SPEAKER WAV PATH> --out_path <PATH TO OUTPUT WAV>

import argparse
import os

import librosa
import soundfile
import torch

from nemo.collections.asr.parts.preprocessing.features import WaveformFeaturizer
from nemo.collections.tts.models import fastpitch_ssl, hifigan, ssl_tts
from nemo.collections.tts.parts.utils.tts_dataset_utils import get_base_dir


def load_wav(wav_path, wav_featurizer, pad_multiple=1024):
    wav = wav_featurizer.process(wav_path)
    if (wav.shape[0] % pad_multiple) != 0:
        wav = torch.cat([wav, torch.zeros(pad_multiple - wav.shape[0] % pad_multiple, dtype=torch.float)])
    wav = wav[:-1]

    return wav


def get_pitch_contour(wav, pitch_mean=None, pitch_std=None, compute_mean_std=False, sample_rate=22050):
    f0, _, _ = librosa.pyin(
        wav.numpy(),
        fmin=librosa.note_to_hz('C2'),
        fmax=librosa.note_to_hz('C7'),
        frame_length=1024,
        hop_length=256,
        sr=sample_rate,
        center=True,
        fill_na=0.0,
    )
    pitch_contour = torch.tensor(f0, dtype=torch.float32)
    _pitch_mean = pitch_contour.mean().item()
    _pitch_std = pitch_contour.std().item()
    if compute_mean_std:
        pitch_mean = _pitch_mean
        pitch_std = _pitch_std
    if (pitch_mean is not None) and (pitch_std is not None):
        pitch_contour = pitch_contour - pitch_mean
        pitch_contour[pitch_contour == -pitch_mean] = 0.0
        pitch_contour = pitch_contour / pitch_std

    return pitch_contour


def segment_wav(wav, segment_length=44100, hop_size=44100, min_segment_size=22050):
    if len(wav) < segment_length:
        pad = torch.zeros(segment_length - len(wav))
        segment = torch.cat([wav, pad])
        return [segment]
    else:
        si = 0
        segments = []
        while si < len(wav) - min_segment_size:
            segment = wav[si : si + segment_length]
            if len(segment) < segment_length:
                pad = torch.zeros(segment_length - len(segment))
                segment = torch.cat([segment, pad])

            segments.append(segment)
            si += hop_size
        return segments


def get_speaker_embedding(ssl_model, wav_featurizer, audio_paths, duration=None, device="cpu"):
    all_segments = []
    all_wavs = []
    for audio_path in audio_paths:
        wav = load_wav(audio_path, wav_featurizer)
        segments = segment_wav(wav)
        all_segments += segments
        all_wavs.append(wav)
        if duration is not None and len(all_segments) >= duration:
            # each segment is 2 seconds with one second overlap.
            # so 10 segments would mean 0 to 2, 1 to 3.. 9 to 11 (11 seconds.)
            all_segments = all_segments[: int(duration)]
            break

    signal_batch = torch.stack(all_segments)
    signal_length_batch = torch.stack([torch.tensor(signal_batch.shape[1]) for _ in range(len(all_segments))])
    signal_batch = signal_batch.to(device)
    signal_length_batch = signal_length_batch.to(device)
    _, speaker_embeddings, _, _, _ = ssl_model.forward_for_export(
        input_signal=signal_batch, input_signal_length=signal_length_batch, normalize_content=True
    )

    speaker_embedding = torch.mean(speaker_embeddings, dim=0)
    l2_norm = torch.norm(speaker_embedding, p=2)
    speaker_embedding = speaker_embedding / l2_norm

    return speaker_embedding[None]


def get_ssl_features_disentangled(
    ssl_model, wav_featurizer, audio_path, emb_type="embedding_and_probs", use_unique_tokens=False, device="cpu"
):
    """
    Extracts content embedding, speaker embedding and duration tokens to be used as inputs for FastPitchModel_SSL 
    synthesizer. Content embedding and speaker embedding extracted using SSLDisentangler model.
    Args:
        ssl_model: SSLDisentangler model
        wav_featurizer: WaveformFeaturizer object
        audio_path: path to audio file
        emb_type: Can be one of embedding_and_probs, embedding, probs, log_probs
        use_unique_tokens: If True, content embeddings with same predicted token are grouped and duration is different.
        device: device to run the model on
    Returns:
        content_embedding, speaker_embedding, duration
    """
    wav = load_wav(audio_path, wav_featurizer)
    audio_signal = wav[None]
    audio_signal_length = torch.tensor([wav.shape[0]])
    audio_signal = audio_signal.to(device)
    audio_signal_length = audio_signal_length.to(device)
    _, speaker_embedding, content_embedding, content_log_probs, encoded_len = ssl_model.forward_for_export(
        input_signal=audio_signal, input_signal_length=audio_signal_length, normalize_content=True
    )

    content_embedding = content_embedding[0, : encoded_len[0].item()]
    content_log_probs = content_log_probs[: encoded_len[0].item(), 0, :]
    content_embedding = content_embedding.t()
    content_log_probs = content_log_probs.t()
    content_probs = torch.exp(content_log_probs)

    ssl_downsampling_factor = ssl_model._cfg.encoder.subsampling_factor

    if emb_type == "probs":
        # content embedding is only character probabilities
        final_content_embedding = content_probs

    elif emb_type == "embedding":
        # content embedding is only output of content head of SSL backbone
        final_content_embedding = content_embedding

    elif emb_type == "log_probs":
        # content embedding is only log of character probabilities
        final_content_embedding = content_log_probs

    elif emb_type == "embedding_and_probs":
        # content embedding is the concatenation of character probabilities and output of content head of SSL backbone
        final_content_embedding = torch.cat([content_embedding, content_probs], dim=0)

    else:
        raise ValueError(
            f"{emb_type} is not valid. Valid emb_type includes probs, embedding, log_probs or embedding_and_probs."
        )

    duration = torch.ones(final_content_embedding.shape[1]) * ssl_downsampling_factor
    if use_unique_tokens:
        # group content embeddings with same predicted token (by averaging) and add the durations of the grouped embeddings
        # Eg. By default each content embedding corresponds to 4 frames of spectrogram (ssl_downsampling_factor)
        # If we group 3 content embeddings, the duration of the grouped embedding will be 12 frames.
        # This is useful for adapting the duration during inference based on the speaker.
        token_predictions = torch.argmax(content_probs, dim=0)
        content_buffer = [final_content_embedding[:, 0]]
        unique_content_embeddings = []
        unique_tokens = []
        durations = []
        for _t in range(1, final_content_embedding.shape[1]):
            if token_predictions[_t] == token_predictions[_t - 1]:
                content_buffer.append(final_content_embedding[:, _t])
            else:
                durations.append(len(content_buffer) * ssl_downsampling_factor)
                unique_content_embeddings.append(torch.mean(torch.stack(content_buffer), dim=0))
                content_buffer = [final_content_embedding[:, _t]]
                unique_tokens.append(token_predictions[_t].item())

        if len(content_buffer) > 0:
            durations.append(len(content_buffer) * ssl_downsampling_factor)
            unique_content_embeddings.append(torch.mean(torch.stack(content_buffer), dim=0))
            unique_tokens.append(token_predictions[_t].item())

        unique_content_embedding = torch.stack(unique_content_embeddings)
        final_content_embedding = unique_content_embedding.t()
        duration = torch.tensor(durations).float()

    duration = duration.to(device)
    return final_content_embedding[None], speaker_embedding, duration[None]


def main():
    parser = argparse.ArgumentParser(description='Evaluate the model')
    parser.add_argument('--ssl_model_ckpt_path', type=str)
    parser.add_argument('--hifi_ckpt_path', type=str)
    parser.add_argument('--fastpitch_ckpt_path', type=str)
    parser.add_argument('--source_audio_path', type=str)
    parser.add_argument('--target_audio_path', type=str)  # can be a list seperated by comma
    parser.add_argument('--out_path', type=str)
    parser.add_argument('--source_target_out_pairs', type=str)
    parser.add_argument('--use_unique_tokens', type=int, default=0)
    parser.add_argument('--compute_pitch', type=int, default=0)
    parser.add_argument('--compute_duration', type=int, default=0)
    args = parser.parse_args()

    device = "cuda:0" if torch.cuda.is_available() else "cpu"

    if args.source_target_out_pairs is not None:
        assert args.source_audio_path is None, "source_audio_path and source_target_out_pairs are mutually exclusive"
        assert args.target_audio_path is None, "target_audio_path and source_target_out_pairs are mutually exclusive"
        assert args.out_path is None, "out_path and source_target_out_pairs are mutually exclusive"
        with open(args.source_target_out_pairs, "r") as f:
            lines = f.readlines()
            source_target_out_pairs = [line.strip().split(";") for line in lines]
    else:
        assert args.source_audio_path is not None, "source_audio_path is required"
        assert args.target_audio_path is not None, "target_audio_path is required"
        if args.out_path is None:
            source_name = os.path.basename(args.source_audio_path).split(".")[0]
            target_name = os.path.basename(args.target_audio_path).split(".")[0]
            args.out_path = "swapped_{}_{}.wav".format(source_name, target_name)

        source_target_out_pairs = [(args.source_audio_path, args.target_audio_path, args.out_path)]

    out_paths = [r[2] for r in source_target_out_pairs]
    out_dir = get_base_dir(out_paths)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    ssl_model = ssl_tts.SSLDisentangler.load_from_checkpoint(args.ssl_model_ckpt_path, strict=False)
    ssl_model = ssl_model.to(device)
    ssl_model.eval()

    vocoder = hifigan.HifiGanModel.load_from_checkpoint(args.hifi_ckpt_path).to(device)
    vocoder.eval()

    fastpitch_model = fastpitch_ssl.FastPitchModel_SSL.load_from_checkpoint(args.fastpitch_ckpt_path, strict=False)
    fastpitch_model = fastpitch_model.to(device)
    fastpitch_model.eval()
    fastpitch_model.non_trainable_models = {'vocoder': vocoder}
    fpssl_sample_rate = fastpitch_model._cfg.sample_rate

    wav_featurizer = WaveformFeaturizer(sample_rate=fpssl_sample_rate, int_values=False, augmentor=None)

    use_unique_tokens = args.use_unique_tokens == 1
    compute_pitch = args.compute_pitch == 1
    compute_duration = args.compute_duration == 1

    for source_target_out in source_target_out_pairs:
        source_audio_path = source_target_out[0]
        target_audio_paths = source_target_out[1].split(",")
        out_path = source_target_out[2]

        with torch.no_grad():
            content_embedding1, _, duration1 = get_ssl_features_disentangled(
                ssl_model,
                wav_featurizer,
                source_audio_path,
                emb_type="embedding_and_probs",
                use_unique_tokens=use_unique_tokens,
                device=device,
            )

            speaker_embedding2 = get_speaker_embedding(
                ssl_model, wav_featurizer, target_audio_paths, duration=None, device=device
            )

            pitch_contour1 = None
            if not compute_pitch:
                pitch_contour1 = get_pitch_contour(
                    load_wav(source_audio_path, wav_featurizer), compute_mean_std=True, sample_rate=fpssl_sample_rate
                )[None]
                pitch_contour1 = pitch_contour1.to(device)

            wav_generated = fastpitch_model.generate_wav(
                content_embedding1,
                speaker_embedding2,
                pitch_contour=pitch_contour1,
                compute_pitch=compute_pitch,
                compute_duration=compute_duration,
                durs_gt=duration1,
                dataset_id=0,
            )
            wav_generated = wav_generated[0][0]
            soundfile.write(out_path, wav_generated, fpssl_sample_rate)


if __name__ == "__main__":
    main()