File size: 13,860 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# USAGE: python process_asr_text_tokenizer.py --manifest=<path to train manifest files, seperated by commas> \
# --data_root="<output directory>" \
# --vocab_size=<number of tokens in vocabulary> \
# --tokenizer=<"spe" or "wpe"> \
# --log
# where <manifest> can be: train_clean_100, train_clean_360, train_other_500
# You can also put more than one data_set comma-separated:
# --manifest="train_clean_100,train_clean_360,train_other_500"
# or
# python process_asr_text_tokenizer.py --data_file=<path to train text file> \
# --data_root="<output directory>" \
# --vocab_size=<number of tokens in vocabulary> \
# --tokenizer=<"bpe" or "wpe"> \
# --log
# where <manifest> can be: train_clean_100, train_clean_360, train_other_500
# You can also put more than one data_set comma-separated:
# --manifest="train_clean_100,train_clean_360,train_other_500"
#
# Args:
# --manifest or --data_file: If your text data lies inside of an ASR manifest file,
# then use the --manifest path. If instead the text data is inside a file with separate lines
# corresponding to different text lines, then use --data_file.
# In either case, you can add commas to concatenate different manifests or different data files.
#
# --data_root: The output directory (whose subdirectories will be created if not present) where
# the tokenizers will be placed.
#
# --vocab_size: The size of the tokenizer vocabulary. Larger vocabularies can accommodate almost entire,
# words but the decoder size of any model will grow proportionally.
#
# --tokenizer: Can be either spe or wpe . spe refers to the Google sentencepiece library tokenizer.
# wpe refers to the HuggingFace BERT Word Piece tokenizer.
#
# --no_lower_case: When this flag is passed, it will force the tokenizer to create seperate tokens for
# upper and lower case characters. By default, the script will turn all the text to lower case
# before tokenization (and if upper case characters are passed during training/inference, the
# tokenizer will emit a token equivalent to Out-Of-Vocabulary). Used primarily for the
# English language.
#
# --spe_type: The sentencepiece library has a few implementations of the tokenization technique, and
# spe_type refers to these implementations. Currently supported types are unigram, bpe, char, word.
# Defaults to bpe.
#
# --spe_character_coverage: The sentencepiece library considers how much of the original vocabulary it
# should cover in its "base set" of tokens (akin to the lower and upper case characters of the
# English language). For almost all languages with small base token sets (<1000 tokens), this
# should be kept at its default of 1.0. For languages with larger vocabularies (say Japanese,
# Mandarin, Korean etc), the suggested value is 0.9995.
#
# --spe_sample_size: If the dataset is too large, consider using a sampled dataset indicated by a
# positive integer. By default, any negative value (default = -1) will use the entire dataset.
#
# --spe_train_extremely_large_corpus: When training a sentencepiece tokenizer on very large amounts of text,
# sometimes the tokenizer will run out of memory or wont be able to process so much data on RAM.
# At some point you might receive the following error - "Input corpus too large, try with
# train_extremely_large_corpus=true". If your machine has large amounts of RAM, it might still be possible
# to build the tokenizer using the above flag. Will silently fail if it runs out of RAM.
#
# --spe_max_sentencepiece_length: Limits the maximum length that any any SentencePiece subword can be.
# Using this will change the subword tokens generated.
#
# --spe_pad: Adds <pad> as special token.
#
# --spe_bos: Adds <s> as Begining-of-Sentence special token.
#
# --spe_eos: Adds </s> as End-of-Sentence special token.
#
# --log: Whether the script should display log messages
import argparse
import json
import logging
import os
import tokenizers
from nemo.collections.common.tokenizers.sentencepiece_tokenizer import create_spt_model
from nemo.utils.data_utils import DataStoreObject
parser = argparse.ArgumentParser(description='Create tokenizer')
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--manifest", default=None, type=str, help='Comma separated list of manifest files')
group.add_argument("--data_file", default=None, help='data file from which to create tokenizer model')
parser.add_argument("--data_root", required=True, default=None, type=str, help='Output directory')
parser.add_argument("--vocab_size", default=1024, type=int, help='Vocabulary size')
parser.add_argument("--tokenizer", default="wpe", choices=["spe", "wpe"], help='Type of tokenization to perform')
parser.add_argument(
"--spe_type",
default="bpe",
choices=['bpe', 'unigram', 'char', 'word'],
help='Type of the SentencePiece model. Can be `bpe`, `unigram`, `char` or `word`.'
'Used only if --tokenizer == `spe`',
)
parser.add_argument(
'--spe_character_coverage',
type=float,
default=1.0,
help="Character coverage percentage for SentencePiece tokenization. For languages "
"with large vocabulary, should be close to 0.9995, otherwise kept as 1.0",
)
parser.add_argument('--spe_bos', action='store_true', help='Add <s> token to SentencePiece Tokenizer.')
parser.add_argument('--spe_eos', action='store_true', help='Add </s> token to SentencePiece Tokenizer.')
parser.add_argument('--spe_pad', action='store_true', help='Add <pad> token to SentencePiece Tokenizer.')
parser.add_argument(
'--spe_sample_size',
type=int,
default=-1,
help="Samples the dataset by `sample_size` if positive integer, otherwise uses whole dataset",
)
parser.add_argument('--spe_train_extremely_large_corpus', action='store_true', help='')
parser.add_argument(
'--spe_max_sentencepiece_length',
type=int,
default=-1,
help='Limit the maximum number of tokens in each SentencePiece subword. '
'Must be a positive integer > 0. By default places no limit on subword length.',
)
parser.add_argument(
'--spe_no_split_by_unicode_script',
dest='spe_split_by_unicode_script',
action='store_false',
help="Don't use Unicode script to split sentence pieces.",
)
parser.add_argument('--no_lower_case', dest='lower_case', action='store_false')
parser.add_argument("--log", action='store_true')
parser.set_defaults(log=False, lower_case=True, spe_train_extremely_large_corpus=False)
args = parser.parse_args()
def __build_document_from_manifests(
data_root: str, manifests: str,
):
if ',' in manifests:
manifests = manifests.split(',')
else:
manifests = [manifests]
document_dir = os.path.join(data_root, 'text_corpus')
if not os.path.exists(document_dir):
os.makedirs(document_dir)
document_path = os.path.join(document_dir, 'document.txt')
if os.path.exists(document_path):
logging.info('Corpus already exists at path : %s', document_path)
return document_path
num_lines = 0
with open(document_path, 'w') as out_writer:
for manifest in manifests:
with open(DataStoreObject(manifest).get(), 'r') as in_reader:
for line in in_reader:
item = json.loads(line)
text = item['text']
out_writer.write(text + '\n')
out_writer.flush()
num_lines += 1
logging.info(f"Finished extracting manifest : {manifest}")
logging.info("Finished extracting all manifests ! Number of sentences : {}".format(num_lines))
return document_path
def __process_data(
text_path: str,
dst_folder: str,
vocab_size: int,
tokenizer_type: str,
spe_type: str,
spe_character_coverage: float,
spe_train_extremely_large_corpus: bool,
spe_sample_size: int,
spe_max_sentencepiece_length: int,
spe_split_by_unicode_script: bool,
spe_bos: bool,
spe_eos: bool,
spe_pad: bool,
lower_case: bool,
):
"""
Converts flac to wav and build manifests's json
Args:
text_path: source with text lines
dst_folder: where wav files will be stored
vocab_size: vocabular size used in encoding the text
tokenizer_type: type of tokenization to perform - wpe or spe
spe_type: type of tokenization model used for spe.
spe_character_coverage: float value between 0 and 1 (as a percentage). For languages with a vast charset,
can be < 1.0, but for all other languages, it should be set as 1.0
spe_sample_size: int, default of -1. If positive integer is used, samples the dataset
by given sample size.
spe_train_extremely_large_corpus: bool. If dataset is too large, and user has sufficient RAM,
this flag can be set to try to trained the tokenizer. Will silently fail if it runs out of RAM.
spe_max_sentencepiece_length: Limits the maximum length of the SentencePiece subword that can be constructed.
By default, no limit is placed.
spe_bos: Bool flag, whether to add <s> to SentencePiece tokenizer vocabulary.
spe_eos: Bool flag, whether to add </s> to SentencePiece tokenizer vocabulary.
spe_pad: Bool flag, whether to add <pad> to SentencePiece tokenizer vocabulary.
lower_case: whether to tokenize with lower case character set only (for english)
Returns:
"""
if tokenizer_type == 'spe':
# Prepare directory of tokenizer
if spe_max_sentencepiece_length > 0:
tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_{}_v{}_max_{}').format(
tokenizer_type, spe_type, vocab_size, spe_max_sentencepiece_length
)
else:
tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_{}_v{}').format(
tokenizer_type, spe_type, vocab_size
)
if spe_pad:
tokenizer_dir = f'{tokenizer_dir}_pad'
if spe_bos:
tokenizer_dir = f'{tokenizer_dir}_bos'
if spe_eos:
tokenizer_dir = f'{tokenizer_dir}_eos'
if not os.path.exists(tokenizer_dir):
os.makedirs(tokenizer_dir)
if os.path.exists(os.path.join(tokenizer_dir, 'tokenizer.model')):
logging.warning("Model file already exists, overriding old model file !")
os.remove(os.path.join(tokenizer_dir, 'tokenizer.model'))
# Build tokenizer
tokenizer_path, vocab_path = create_spt_model(
data_file=text_path,
vocab_size=vocab_size,
sample_size=spe_sample_size,
do_lower_case=lower_case,
output_dir=tokenizer_dir,
tokenizer_type=spe_type,
character_coverage=spe_character_coverage,
train_extremely_large_corpus=spe_train_extremely_large_corpus,
max_sentencepiece_length=spe_max_sentencepiece_length,
split_by_unicode_script=spe_split_by_unicode_script,
bos=spe_bos,
eos=spe_eos,
pad=spe_pad,
)
else:
tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_v{}').format(tokenizer_type, vocab_size)
if not os.path.exists(tokenizer_dir):
os.makedirs(tokenizer_dir)
tokenizer = tokenizers.BertWordPieceTokenizer(lowercase=lower_case)
tokenizer.train(text_path, vocab_size=vocab_size)
tokenizer.save_model(tokenizer_dir)
return tokenizer_dir
def main():
data_root = args.data_root
manifests = args.manifest
data_file = args.data_file
vocab_size = args.vocab_size
tokenizer = args.tokenizer
spe_type = args.spe_type
spe_character_coverage = args.spe_character_coverage
spe_sample_size = args.spe_sample_size
spe_train_extremely_large_corpus = args.spe_train_extremely_large_corpus
spe_max_sentencepiece_length = args.spe_max_sentencepiece_length
spe_split_by_unicode_script = args.spe_split_by_unicode_script
spe_bos, spe_eos, spe_pad = args.spe_bos, args.spe_eos, args.spe_pad
lower_case = args.lower_case
if not os.path.exists(data_root):
os.makedirs(data_root)
if args.log:
logging.basicConfig(level=logging.INFO)
if manifests:
text_corpus_path = __build_document_from_manifests(data_root, manifests)
else:
text_corpus_path = data_file
tokenizer_path = __process_data(
text_corpus_path,
data_root,
vocab_size,
tokenizer,
spe_type,
lower_case=lower_case,
spe_character_coverage=spe_character_coverage,
spe_sample_size=spe_sample_size,
spe_train_extremely_large_corpus=spe_train_extremely_large_corpus,
spe_max_sentencepiece_length=spe_max_sentencepiece_length,
spe_split_by_unicode_script=spe_split_by_unicode_script,
spe_bos=spe_bos,
spe_eos=spe_eos,
spe_pad=spe_pad,
)
print("Serialized tokenizer at location :", tokenizer_path)
logging.info('Done!')
if __name__ == "__main__":
main()
|