File size: 12,848 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import logging.handlers
import math
import os
import sys
from pathlib import PosixPath
from typing import List, Tuple, Union
import ctc_segmentation as cs
import numpy as np
from tqdm import tqdm
from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer
def get_segments(
log_probs: np.ndarray,
path_wav: Union[PosixPath, str],
transcript_file: Union[PosixPath, str],
output_file: str,
vocabulary: List[str],
tokenizer: SentencePieceTokenizer,
bpe_model: bool,
index_duration: float,
window_size: int = 8000,
log_file: str = "log.log",
debug: bool = False,
) -> None:
"""
Segments the audio into segments and saves segments timings to a file
Args:
log_probs: Log probabilities for the original audio from an ASR model, shape T * |vocabulary|.
values for blank should be at position 0
path_wav: path to the audio .wav file
transcript_file: path to
output_file: path to the file to save timings for segments
vocabulary: vocabulary used to train the ASR model, note blank is at position len(vocabulary) - 1
tokenizer: ASR model tokenizer (for BPE models, None for char-based models)
bpe_model: Indicates whether the model uses BPE
window_size: the length of each utterance (in terms of frames of the CTC outputs) fits into that window.
index_duration: corresponding time duration of one CTC output index (in seconds)
"""
level = "DEBUG" if debug else "INFO"
file_handler = logging.FileHandler(filename=log_file)
stdout_handler = logging.StreamHandler(sys.stdout)
handlers = [file_handler, stdout_handler]
logging.basicConfig(handlers=handlers, level=level)
try:
with open(transcript_file, "r") as f:
text = f.readlines()
text = [t.strip() for t in text if t.strip()]
# add corresponding original text without pre-processing
transcript_file_no_preprocessing = transcript_file.replace(".txt", "_with_punct.txt")
if not os.path.exists(transcript_file_no_preprocessing):
raise ValueError(f"{transcript_file_no_preprocessing} not found.")
with open(transcript_file_no_preprocessing, "r") as f:
text_no_preprocessing = f.readlines()
text_no_preprocessing = [t.strip() for t in text_no_preprocessing if t.strip()]
# add corresponding normalized original text
transcript_file_normalized = transcript_file.replace(".txt", "_with_punct_normalized.txt")
if not os.path.exists(transcript_file_normalized):
raise ValueError(f"{transcript_file_normalized} not found.")
with open(transcript_file_normalized, "r") as f:
text_normalized = f.readlines()
text_normalized = [t.strip() for t in text_normalized if t.strip()]
if len(text_no_preprocessing) != len(text):
raise ValueError(f"{transcript_file} and {transcript_file_no_preprocessing} do not match")
if len(text_normalized) != len(text):
raise ValueError(f"{transcript_file} and {transcript_file_normalized} do not match")
config = cs.CtcSegmentationParameters()
config.char_list = vocabulary
config.min_window_size = window_size
config.index_duration = index_duration
if bpe_model:
ground_truth_mat, utt_begin_indices = _prepare_tokenized_text_for_bpe_model(text, tokenizer, vocabulary, 0)
else:
config.excluded_characters = ".,-?!:»«;'›‹()"
config.blank = vocabulary.index(" ")
ground_truth_mat, utt_begin_indices = cs.prepare_text(config, text)
_print(ground_truth_mat, config.char_list)
# set this after text prepare_text()
config.blank = 0
logging.debug(f"Syncing {transcript_file}")
logging.debug(
f"Audio length {os.path.basename(path_wav)}: {log_probs.shape[0]}. "
f"Text length {os.path.basename(transcript_file)}: {len(ground_truth_mat)}"
)
timings, char_probs, char_list = cs.ctc_segmentation(config, log_probs, ground_truth_mat)
_print(ground_truth_mat, vocabulary)
segments = determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text, char_list)
write_output(output_file, path_wav, segments, text, text_no_preprocessing, text_normalized)
# Also writes labels in audacity format
output_file_audacity = output_file[:-4] + "_audacity.txt"
write_labels_for_audacity(output_file_audacity, segments, text_no_preprocessing)
logging.info(f"Label file for Audacity written to {output_file_audacity}.")
for i, (word, segment) in enumerate(zip(text, segments)):
if i < 5:
logging.debug(f"{segment[0]:.2f} {segment[1]:.2f} {segment[2]:3.4f} {word}")
logging.info(f"segmentation of {transcript_file} complete.")
except Exception as e:
logging.info(f"{e} -- segmentation of {transcript_file} failed")
def _prepare_tokenized_text_for_bpe_model(text: List[str], tokenizer, vocabulary: List[str], blank_idx: int = 0):
""" Creates a transition matrix for BPE-based models"""
space_idx = vocabulary.index("▁")
ground_truth_mat = [[-1, -1]]
utt_begin_indices = []
for uttr in text:
ground_truth_mat += [[blank_idx, space_idx]]
utt_begin_indices.append(len(ground_truth_mat))
token_ids = tokenizer.text_to_ids(uttr)
# blank token is moved from the last to the first (0) position in the vocabulary
token_ids = [idx + 1 for idx in token_ids]
ground_truth_mat += [[t, -1] for t in token_ids]
utt_begin_indices.append(len(ground_truth_mat))
ground_truth_mat += [[blank_idx, space_idx]]
ground_truth_mat = np.array(ground_truth_mat, np.int64)
return ground_truth_mat, utt_begin_indices
def _print(ground_truth_mat, vocabulary, limit=20):
"""Prints transition matrix"""
chars = []
for row in ground_truth_mat:
chars.append([])
for ch_id in row:
if ch_id != -1:
chars[-1].append(vocabulary[int(ch_id)])
for x in chars[:limit]:
logging.debug(x)
def _get_blank_spans(char_list, blank="ε"):
"""
Returns a list of tuples:
(start index, end index (exclusive), count)
ignores blank symbols at the beginning and end of the char_list
since they're not suitable for split in between
"""
blanks = []
start = None
end = None
for i, ch in enumerate(char_list):
if ch == blank:
if start is None:
start, end = i, i
else:
end = i
else:
if start is not None:
# ignore blank tokens at the beginning
if start > 0:
end += 1
blanks.append((start, end, end - start))
start = None
end = None
return blanks
def _compute_time(index, align_type, timings):
"""Compute start and end time of utterance.
Adapted from https://github.com/lumaku/ctc-segmentation
Args:
index: frame index value
align_type: one of ["begin", "end"]
Return:
start/end time of utterance in seconds
"""
middle = (timings[index] + timings[index - 1]) / 2
if align_type == "begin":
return max(timings[index + 1] - 0.5, middle)
elif align_type == "end":
return min(timings[index - 1] + 0.5, middle)
def determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text, char_list):
"""Utterance-wise alignments from char-wise alignments.
Adapted from https://github.com/lumaku/ctc-segmentation
Args:
config: an instance of CtcSegmentationParameters
utt_begin_indices: list of time indices of utterance start
char_probs: character positioned probabilities obtained from backtracking
timings: mapping of time indices to seconds
text: list of utterances
Return:
segments, a list of: utterance start and end [s], and its confidence score
"""
segments = []
min_prob = np.float64(-10000000000.0)
for i in tqdm(range(len(text))):
start = _compute_time(utt_begin_indices[i], "begin", timings)
end = _compute_time(utt_begin_indices[i + 1], "end", timings)
start_t = start / config.index_duration_in_seconds
start_t_floor = math.floor(start_t)
# look for the left most blank symbol and split in the middle to fix start utterance segmentation
if char_list[start_t_floor] == config.char_list[config.blank]:
start_blank = None
j = start_t_floor - 1
while char_list[j] == config.char_list[config.blank] and j > start_t_floor - 20:
start_blank = j
j -= 1
if start_blank:
start_t = int(round(start_blank + (start_t_floor - start_blank) / 2))
else:
start_t = start_t_floor
start = start_t * config.index_duration_in_seconds
else:
start_t = int(round(start_t))
end_t = int(round(end / config.index_duration_in_seconds))
# Compute confidence score by using the min mean probability after splitting into segments of L frames
n = config.score_min_mean_over_L
if end_t <= start_t:
min_avg = min_prob
elif end_t - start_t <= n:
min_avg = char_probs[start_t:end_t].mean()
else:
min_avg = np.float64(0.0)
for t in range(start_t, end_t - n):
min_avg = min(min_avg, char_probs[t : t + n].mean())
segments.append((start, end, min_avg))
return segments
def write_output(
out_path: str,
path_wav: str,
segments: List[Tuple[float]],
text: str,
text_no_preprocessing: str,
text_normalized: str,
):
"""
Write the segmentation output to a file
out_path: Path to output file
path_wav: Path to the original audio file
segments: Segments include start, end and alignment score
text: Text used for alignment
text_no_preprocessing: Reference txt without any pre-processing
text_normalized: Reference text normalized
"""
# Uses char-wise alignments to get utterance-wise alignments and writes them into the given file
with open(str(out_path), "w") as outfile:
outfile.write(str(path_wav) + "\n")
for i, segment in enumerate(segments):
if isinstance(segment, list):
for j, x in enumerate(segment):
start, end, score = x
outfile.write(
f"{start} {end} {score} | {text[i][j]} | {text_no_preprocessing[i][j]} | {text_normalized[i][j]}\n"
)
else:
start, end, score = segment
outfile.write(
f"{start} {end} {score} | {text[i]} | {text_no_preprocessing[i]} | {text_normalized[i]}\n"
)
def write_labels_for_audacity(
out_path: str, segments: List[Tuple[float]], text_no_preprocessing: str,
):
"""
Write the segmentation output to a file ready to be imported in Audacity with the unprocessed text as labels
out_path: Path to output file
segments: Segments include start, end and alignment score
text_no_preprocessing: Reference txt without any pre-processing
"""
# Audacity uses tab to separate each field (start end text)
TAB_CHAR = " "
# Uses char-wise alignments to get utterance-wise alignments and writes them into the given file
with open(str(out_path), "w") as outfile:
for i, segment in enumerate(segments):
if isinstance(segment, list):
for j, x in enumerate(segment):
start, end, _ = x
outfile.write(f"{start}{TAB_CHAR}{end}{TAB_CHAR}{text_no_preprocessing[i][j]} \n")
else:
start, end, _ = segment
outfile.write(f"{start}{TAB_CHAR}{end}{TAB_CHAR}{text_no_preprocessing[i]} \n")
|