File size: 12,848 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import logging.handlers
import math
import os
import sys
from pathlib import PosixPath
from typing import List, Tuple, Union

import ctc_segmentation as cs
import numpy as np
from tqdm import tqdm

from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer


def get_segments(
    log_probs: np.ndarray,
    path_wav: Union[PosixPath, str],
    transcript_file: Union[PosixPath, str],
    output_file: str,
    vocabulary: List[str],
    tokenizer: SentencePieceTokenizer,
    bpe_model: bool,
    index_duration: float,
    window_size: int = 8000,
    log_file: str = "log.log",
    debug: bool = False,
) -> None:
    """
    Segments the audio into segments and saves segments timings to a file

    Args:
        log_probs: Log probabilities for the original audio from an ASR model, shape T * |vocabulary|.
                   values for blank should be at position 0
        path_wav: path to the audio .wav file
        transcript_file: path to
        output_file: path to the file to save timings for segments
        vocabulary: vocabulary used to train the ASR model, note blank is at position len(vocabulary) - 1
        tokenizer: ASR model tokenizer (for BPE models, None for char-based models)
        bpe_model: Indicates whether the model uses BPE
        window_size: the length of each utterance (in terms of frames of the CTC outputs) fits into that window.
        index_duration: corresponding time duration of one CTC output index (in seconds)
    """
    level = "DEBUG" if debug else "INFO"
    file_handler = logging.FileHandler(filename=log_file)
    stdout_handler = logging.StreamHandler(sys.stdout)
    handlers = [file_handler, stdout_handler]
    logging.basicConfig(handlers=handlers, level=level)

    try:
        with open(transcript_file, "r") as f:
            text = f.readlines()
            text = [t.strip() for t in text if t.strip()]

        # add corresponding original text without pre-processing
        transcript_file_no_preprocessing = transcript_file.replace(".txt", "_with_punct.txt")
        if not os.path.exists(transcript_file_no_preprocessing):
            raise ValueError(f"{transcript_file_no_preprocessing} not found.")

        with open(transcript_file_no_preprocessing, "r") as f:
            text_no_preprocessing = f.readlines()
            text_no_preprocessing = [t.strip() for t in text_no_preprocessing if t.strip()]

        # add corresponding normalized original text
        transcript_file_normalized = transcript_file.replace(".txt", "_with_punct_normalized.txt")
        if not os.path.exists(transcript_file_normalized):
            raise ValueError(f"{transcript_file_normalized} not found.")

        with open(transcript_file_normalized, "r") as f:
            text_normalized = f.readlines()
            text_normalized = [t.strip() for t in text_normalized if t.strip()]

        if len(text_no_preprocessing) != len(text):
            raise ValueError(f"{transcript_file} and {transcript_file_no_preprocessing} do not match")

        if len(text_normalized) != len(text):
            raise ValueError(f"{transcript_file} and {transcript_file_normalized} do not match")

        config = cs.CtcSegmentationParameters()
        config.char_list = vocabulary
        config.min_window_size = window_size
        config.index_duration = index_duration

        if bpe_model:
            ground_truth_mat, utt_begin_indices = _prepare_tokenized_text_for_bpe_model(text, tokenizer, vocabulary, 0)
        else:
            config.excluded_characters = ".,-?!:»«;'›‹()"
            config.blank = vocabulary.index(" ")
            ground_truth_mat, utt_begin_indices = cs.prepare_text(config, text)

        _print(ground_truth_mat, config.char_list)

        # set this after text prepare_text()
        config.blank = 0
        logging.debug(f"Syncing {transcript_file}")
        logging.debug(
            f"Audio length {os.path.basename(path_wav)}: {log_probs.shape[0]}. "
            f"Text length {os.path.basename(transcript_file)}: {len(ground_truth_mat)}"
        )

        timings, char_probs, char_list = cs.ctc_segmentation(config, log_probs, ground_truth_mat)
        _print(ground_truth_mat, vocabulary)
        segments = determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text, char_list)

        write_output(output_file, path_wav, segments, text, text_no_preprocessing, text_normalized)

        # Also writes labels in audacity format
        output_file_audacity = output_file[:-4] + "_audacity.txt"
        write_labels_for_audacity(output_file_audacity, segments, text_no_preprocessing)
        logging.info(f"Label file for Audacity written to {output_file_audacity}.")

        for i, (word, segment) in enumerate(zip(text, segments)):
            if i < 5:
                logging.debug(f"{segment[0]:.2f} {segment[1]:.2f} {segment[2]:3.4f} {word}")
        logging.info(f"segmentation of {transcript_file} complete.")

    except Exception as e:
        logging.info(f"{e} -- segmentation of {transcript_file} failed")


def _prepare_tokenized_text_for_bpe_model(text: List[str], tokenizer, vocabulary: List[str], blank_idx: int = 0):
    """ Creates a transition matrix for BPE-based models"""
    space_idx = vocabulary.index("▁")
    ground_truth_mat = [[-1, -1]]
    utt_begin_indices = []
    for uttr in text:
        ground_truth_mat += [[blank_idx, space_idx]]
        utt_begin_indices.append(len(ground_truth_mat))
        token_ids = tokenizer.text_to_ids(uttr)
        # blank token is moved from the last to the first (0) position in the vocabulary
        token_ids = [idx + 1 for idx in token_ids]
        ground_truth_mat += [[t, -1] for t in token_ids]

    utt_begin_indices.append(len(ground_truth_mat))
    ground_truth_mat += [[blank_idx, space_idx]]
    ground_truth_mat = np.array(ground_truth_mat, np.int64)
    return ground_truth_mat, utt_begin_indices


def _print(ground_truth_mat, vocabulary, limit=20):
    """Prints transition matrix"""
    chars = []
    for row in ground_truth_mat:
        chars.append([])
        for ch_id in row:
            if ch_id != -1:
                chars[-1].append(vocabulary[int(ch_id)])

    for x in chars[:limit]:
        logging.debug(x)


def _get_blank_spans(char_list, blank="ε"):
    """
    Returns a list of tuples:
        (start index, end index (exclusive), count)

    ignores blank symbols at the beginning and end of the char_list
    since they're not suitable for split in between
    """
    blanks = []
    start = None
    end = None
    for i, ch in enumerate(char_list):
        if ch == blank:
            if start is None:
                start, end = i, i
            else:
                end = i
        else:
            if start is not None:
                # ignore blank tokens at the beginning
                if start > 0:
                    end += 1
                    blanks.append((start, end, end - start))
                start = None
                end = None
    return blanks


def _compute_time(index, align_type, timings):
    """Compute start and end time of utterance.
    Adapted from https://github.com/lumaku/ctc-segmentation

    Args:
        index:  frame index value
        align_type:  one of ["begin", "end"]

    Return:
        start/end time of utterance in seconds
    """
    middle = (timings[index] + timings[index - 1]) / 2
    if align_type == "begin":
        return max(timings[index + 1] - 0.5, middle)
    elif align_type == "end":
        return min(timings[index - 1] + 0.5, middle)


def determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text, char_list):
    """Utterance-wise alignments from char-wise alignments.
    Adapted from https://github.com/lumaku/ctc-segmentation

    Args:
        config: an instance of CtcSegmentationParameters
        utt_begin_indices: list of time indices of utterance start
        char_probs:  character positioned probabilities obtained from backtracking
        timings: mapping of time indices to seconds
        text: list of utterances
    Return:
        segments, a list of: utterance start and end [s], and its confidence score
    """
    segments = []
    min_prob = np.float64(-10000000000.0)
    for i in tqdm(range(len(text))):
        start = _compute_time(utt_begin_indices[i], "begin", timings)
        end = _compute_time(utt_begin_indices[i + 1], "end", timings)

        start_t = start / config.index_duration_in_seconds
        start_t_floor = math.floor(start_t)

        # look for the left most blank symbol and split in the middle to fix start utterance segmentation
        if char_list[start_t_floor] == config.char_list[config.blank]:
            start_blank = None
            j = start_t_floor - 1
            while char_list[j] == config.char_list[config.blank] and j > start_t_floor - 20:
                start_blank = j
                j -= 1
            if start_blank:
                start_t = int(round(start_blank + (start_t_floor - start_blank) / 2))
            else:
                start_t = start_t_floor
            start = start_t * config.index_duration_in_seconds

        else:
            start_t = int(round(start_t))

        end_t = int(round(end / config.index_duration_in_seconds))

        # Compute confidence score by using the min mean probability after splitting into segments of L frames
        n = config.score_min_mean_over_L
        if end_t <= start_t:
            min_avg = min_prob
        elif end_t - start_t <= n:
            min_avg = char_probs[start_t:end_t].mean()
        else:
            min_avg = np.float64(0.0)
            for t in range(start_t, end_t - n):
                min_avg = min(min_avg, char_probs[t : t + n].mean())
        segments.append((start, end, min_avg))
    return segments


def write_output(
    out_path: str,
    path_wav: str,
    segments: List[Tuple[float]],
    text: str,
    text_no_preprocessing: str,
    text_normalized: str,
):
    """
    Write the segmentation output to a file

    out_path: Path to output file
    path_wav: Path to the original audio file
    segments: Segments include start, end and alignment score
    text: Text used for alignment
    text_no_preprocessing: Reference txt without any pre-processing
    text_normalized: Reference text normalized
    """
    # Uses char-wise alignments to get utterance-wise alignments and writes them into the given file
    with open(str(out_path), "w") as outfile:
        outfile.write(str(path_wav) + "\n")

        for i, segment in enumerate(segments):
            if isinstance(segment, list):
                for j, x in enumerate(segment):
                    start, end, score = x
                    outfile.write(
                        f"{start} {end} {score} | {text[i][j]} | {text_no_preprocessing[i][j]} | {text_normalized[i][j]}\n"
                    )
            else:
                start, end, score = segment
                outfile.write(
                    f"{start} {end} {score} | {text[i]} | {text_no_preprocessing[i]} | {text_normalized[i]}\n"
                )


def write_labels_for_audacity(
    out_path: str, segments: List[Tuple[float]], text_no_preprocessing: str,
):
    """
    Write the segmentation output to a file ready to be imported in Audacity with the unprocessed text as labels

    out_path: Path to output file
    segments: Segments include start, end and alignment score
    text_no_preprocessing: Reference txt without any pre-processing
    """
    # Audacity uses tab to separate each field (start end text)
    TAB_CHAR = "	"

    # Uses char-wise alignments to get utterance-wise alignments and writes them into the given file
    with open(str(out_path), "w") as outfile:

        for i, segment in enumerate(segments):
            if isinstance(segment, list):
                for j, x in enumerate(segment):
                    start, end, _ = x
                    outfile.write(f"{start}{TAB_CHAR}{end}{TAB_CHAR}{text_no_preprocessing[i][j]} \n")
            else:
                start, end, _ = segment
                outfile.write(f"{start}{TAB_CHAR}{end}{TAB_CHAR}{text_no_preprocessing[i]} \n")