CRYSTAL-R1 / SoundScribe /SpeakerID /scripts /checkpoint_averaging /distributed_checkpoint_averaging.py
crystal-technologies's picture
Upload 1287 files
2d8da09
raw
history blame
6.12 kB
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example: python scripts/checkpoint_averaging/distributed_checkpoint_averaging.py \
--name_prefix=<checkpoint name> \
--checkpoint_dir=<folder with mp_rank_X subfolders containing checkpoints>
--steps <optinally a list of checkpoint steps to average, if not provided, it will average all the checkpoints>
will generate a new directory in each of the distributed checkpoint subfolders named <checkpoint name>-averaged
"""
import argparse
import logging
import os
import shutil
import zarr
logging.basicConfig(level=logging.INFO)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--name_prefix', help='Name of the final checkpoint. Will append -averaged automatically.',
)
parser.add_argument(
'--checkpoint_dir', help='Folder containing all the distributed checkpoints.',
)
# list of checkpoint steps to average
parser.add_argument(
'--steps',
nargs='+',
type=int,
help='List of checkpoint steps to average. If not specified, will average all.',
)
args = parser.parse_args()
if args.steps is not None:
logging.info(f"Will average only steps {args.steps}")
# repeating for all ranks
checkpoint_paths = []
for ckpt_dir in os.listdir(args.checkpoint_dir):
logging.info("Processing %s", ckpt_dir)
if ckpt_dir.endswith('0-last'):
continue
if args.steps is None:
checkpoint_paths.append(ckpt_dir)
else:
for step in args.steps:
key = f"-step={step}-"
if key in ckpt_dir:
checkpoint_paths.append(ckpt_dir)
n = len(checkpoint_paths)
# initialize dict, will be used to store the weights that need to be averaged
avg_weights = {}
logging.info(f"Averaging {n} checkpoints ... {'at steps:' + str(args.steps) if args.steps is not None else ''}")
# item that needs to be copied to the new checkpoint folder
copy_items = []
for ix, path in enumerate(checkpoint_paths):
full_path = os.path.join(args.checkpoint_dir, path)
for item in os.listdir(full_path):
# if item is not a directory, skip it
if not os.path.isdir(os.path.join(full_path, item)):
if ix == 0:
copy_items.append(os.path.join(full_path, item))
continue
# transformer engine states, leave them out
if item.endswith('._extra_state'):
if ix == 0:
copy_items.append(os.path.join(full_path, item))
continue
# optimizer states, no point of averaing them
if item.startswith('optimizer.'):
if ix == 0:
copy_items.append(os.path.join(full_path, item))
continue
if item not in avg_weights:
logging.info(f"Initialized average weights dict with: {item}")
avg_weights[item] = zarr.open(os.path.join(full_path, item), mode='r')
else:
logging.info(f"Updated average weights dict with weight: {item}")
array_z = zarr.open(os.path.join(full_path, item), mode='r')
sum_array = avg_weights[item][:] + array_z[:]
avg_weights[item] = zarr.array(sum_array, chunks=array_z.chunks, dtype=array_z.dtype)
for k in avg_weights:
logging.info(f"Average weights dict key : {k}, dtype : {avg_weights[k].dtype}, shape : {avg_weights[k].shape}")
if str(avg_weights[k].dtype).startswith("int"):
raise ValueError("Int type not supported")
else:
array_z = avg_weights[k][:]
array_z = array_z / n
avg_weights[k] = zarr.array(array_z, chunks=avg_weights[k].chunks, dtype=avg_weights[k].dtype)
# Save model
if args.steps is None:
ckpt_name = os.path.join(args.checkpoint_dir, args.name_prefix + '-averaged')
else:
steps_combined = '_'.join([str(x) for x in args.steps])
ckpt_name = os.path.join(args.checkpoint_dir, args.name_prefix + '-' + steps_combined + '-averaged')
# save avg_weights
for k in avg_weights:
logging.info(f"Saving {k} to {ckpt_name}")
zarr.save(os.path.join(ckpt_name, k), avg_weights[k])
# copy other files
for item in copy_items:
is_file = os.path.isfile(item)
logging.info(f"Copying {'directory' if is_file else 'file'} {item} to {ckpt_name}")
if os.path.isfile(item):
# copy single file
shutil.copy(item, ckpt_name)
else:
# copy directory
shutil.copytree(item, os.path.join(ckpt_name, os.path.basename(item)), dirs_exist_ok=True)
logging.info(f"Averaged distributed checkpoint saved as : {ckpt_name}")
if __name__ == '__main__':
main()