CRYSTAL-R1
/
SoundScribe
/SpeakerID
/scripts
/voice_activity_detection
/write_long_audio_manifest.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from argparse import ArgumentParser | |
import numpy as np | |
from nemo.collections.asr.parts.utils.vad_utils import prepare_manifest | |
from nemo.utils import logging | |
""" | |
This script is designed for inference of frame level Voice Activity Detection (VAD) | |
This script serves three goals: | |
(1) Write audio files to manifest | |
(2) Split audio file for avoiding CUDA memory issue | |
(3) Take care of joint of seperate json line for an audio file | |
Usage: | |
python write_long_audio_manifest.py --inp_dir=<FULL PATH OF FOLDER OF AUDIO FILES> --split_duration=300 --window_length_in_sec=0.63 --num_worker=10 | |
""" | |
def main(): | |
parser = ArgumentParser() | |
parser.add_argument("--inp_dir", type=str, required=True, help="(full path) folder of files to be processed") | |
parser.add_argument( | |
"--inp_list", type=str, help="(full path) a file contains NAME of files inside inp_dir to be processed" | |
) | |
parser.add_argument("--out_dir", type=str, default=".", help="(full path) location to store generated json file") | |
parser.add_argument("--manifest_name", type=str, default="generated_manifest", help="name of generated json file") | |
parser.add_argument("--split_duration", type=int, required=True, help="max duration of each audio clip/line") | |
parser.add_argument( | |
"--window_length_in_sec", | |
type=float, | |
default=0.63, | |
help="window length in sec for VAD context input , default is 0.63s", | |
) | |
parser.add_argument("--num_workers", type=int, default=4, help="number of workers for multiprocessing") | |
args = parser.parse_args() | |
if not args.inp_list: | |
input_audios = [] | |
for root, dirs, files in os.walk(args.inp_dir): | |
for basename in files: | |
if basename.endswith('.wav'): | |
filename = os.path.join(root, basename) | |
input_audios.append(filename) | |
else: | |
name_list = np.loadtxt(args.inp_list, dtype='str') | |
input_audios = [os.path.join(args.inp_dir, name + ".wav") for name in name_list] | |
input_list = [] | |
for i in input_audios: | |
input_list.append({'audio_filepath': i, "offset": 0, "duration": None}) | |
logging.info(f"Number of wav files to be processed: {len(input_audios)}") | |
output_path = os.path.join(args.out_dir, args.manifest_name + '.json') | |
logging.info("Split long audio file to avoid CUDA memory issue") | |
logging.debug("Try smaller split_duration if you still have CUDA memory issue") | |
config = { | |
'input': input_list, | |
'window_length_in_sec': args.window_length_in_sec, | |
'split_duration': args.split_duration, | |
'num_workers': args.num_workers, | |
'prepared_manfiest_vad_input': output_path, | |
} | |
manifest_vad_input = prepare_manifest(config) | |
logging.info(f"Done! Save to {manifest_vad_input}") | |
if __name__ == '__main__': | |
main() | |